Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritte in der Stammzellforschung

23.01.2013
Das Umsetzen der Ergebnisse der Stammzellforschung für klinische relevante Therapien scheitert häufig an geeigneten Techniken für die Zellkultivierung.
Die im Rahmen eines EU-Projektes am Institut für Bioprozess- und Analysenmesstechnik in Heilbad Heiligenstadt (iba) neu entwickelten Mikrobioreaktoren helfen, diesen Mangel zu überwinden.

In den letzten Jahren sind bedeutende Fortschritte auf dem Gebiet der Stammzellforschung erzielt worden. Trotzdem sind bei Weitem nicht alle Probleme gelöst. Insbesondere fehlt es an geeigneten Techniken, Stammzellen in genügender Menge und reproduzierbar zu expandieren und zu differenzieren. Ein neues, im Rahmen des EU-Projektes „HYPERLAB“ entwickeltes Mikroreaktorsystem umgeht die Nachteile konventioneller Kultivierungssysteme, indem nachteilige Einflüsse des Kultivierungssystems, wie z.B. ungewünschte Adhäsionen von Zellen an den Wänden der Kultivierungssysteme, eliminiert werden.

Stammzellen im Mikrobioreaktor vor der Bildung eines „Embryoid Body‘s“. Das Volumen des Mikrobioreaktors beträgt 800nL und bietet optimale Voraussetzungen für das Kultivieren der Zellen.

Möglich wurde dieser Fortschritt durch das Anwenden der „Segmented Flow-Technik“, einem Prinzip, dass sich in den letzten Jahren für eine Reihe von Applikationen etabliert hat. Jedes dieser bis zu 20µL großen „Segmente“ funktioniert als ein einzelner Mikrobioreaktor und beinhaltet eine definierte Menge von Stammzellen. Die Mikrobioreaktoren befinden sich in einem Schlauchsystem, wobei die Segmente durch ein nicht mischbares Fluid getrennt sind. Aufgrund der Bedingungen im Mikrobioreaktor können die im Allgemeinen adhärent kultivierten Zellen sogenannte „Embryoid Bodies“ ausbilden, die für verschiedenste Untersuchungen, z.B. für Cytotoxizitätstests, eingesetzt werden.

Aber auch das Kultivieren der Zellen auf speziellen Trägermaterialien ist möglich. Das Manipulieren der Mikrobioreaktoren erfolgt ebenso wie die optische Detektion der Zellen mittels mikrofluidischer Module. Das Versorgen der Zellen z.B. mit Sauerstoff erfolgt über die Schlauchwand und das zwischen den Mikrobioreaktoren befindliche Trennfluid.

Bisherige Untersuchungen haben gezeigt, dass im Vergleich zu kommerziellen Techniken vergleichbare Ergebnisse erzielt werden können. Jedoch ist das neu entwickelte System automatisierbar, robust und steriltechnisch sicher. Der bereits jetzt schon große Umfang unterschiedlicher Kultivierungsprotokolle kann von den Nutzern dieses neuen Kultivierungssystems anwendungsspezifisch erweitert werden.

Im Projektkonsortium haben neben dem iba Forschungseinrichtungen und Unternehmen aus Deutschland (FhG IBMT, St. Ingbert, Klinikum der Universität zu Köln), Österreich (Medical University Vienna), Portugal (Instituto de Biologia Exp. e Tecnológica), Belgien (Cryo-Save Group), Schweden Cellartis AB) Chile (Universidad Catolica del Norte) und Frankreich (ARTTIC SAS) mitgearbeitet.

Gefördert wurden die Forschungsarbeiten mit Mitteln des 7.Rahmenprogramms der EU (Förderkennzeichen: FP7 – 223011).

Weitere Informationen:
Dr. Gunter Gastrock
Institut für Bioprozess- und Analysenmesstechnik (iba) e.V.
Heilbad Heiligenstadt
Telefon: 03606 / 671-400
E-Mail: gunter.gastrock@iba-heiligenstadt.de

Sebastian Kaufhold | idw
Weitere Informationen:
http://www.iba-heiligenstadt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie