Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritte bei der Nutzung von Mikroorganismen für die Erzeugung von elektrischer Energie

01.03.2011
Weltweit erforschen Wissenschaftlerteams, wie man Mikroorganismen zur Energiegewinnung nutzen kann. An der Technischen Universität Braunschweig ist das Team von Prof. Dr. Uwe Schröder diesem Ziel näher gekommen. Die Ergebnisse dieser Forschung sind jetzt in drei Artikeln renommierter Fachzeitschriften veröffentlicht worden.

Das Braunschweiger Forscherteam beschäftigt sich seit längerem mit elektrokatalytisch aktiven Bakterien. Ziel ist es, mit Hilfe dieser Biofilme eine neue Technologie zu entwickeln. Sie soll es unter anderem ermöglichen, niedrigenergetische Biomasse, wie zum Beispiel Abwasser, zur Gewinnung von elektrischer Energie oder zur Produktion von wertvollen Grundstoffen zu nutzen. Dieses Technologiekonzept ist seit längerem unter dem Schlagwort „mikrobielle Brennstoffzelle“ oder „mikrobielle Bioelektrochemische Systeme“ bekannt.

Der Weg vom im Labormaßstab erfolgreichen Konzept zur fertigen Technologie ist allerdings noch lang. Es müssen noch fundamentale und technologische Fragen beantwortet werden. Drei Bausteine auf diesem Weg können jetzt die Forscher aus Braunschweig in Zusammenarbeit mit externen Kooperationspartnern beisteuern.

In Zusammenarbeit mit der TU Berlin unter Federführung von Dr. Falk Harnisch, TU Braunschweig, und Dr. Diego Millo, TU Berlin, konnte erstmals eine in situ spektroelektrochemische Untersuchung an lebenden Biofilmen, das heißt Zellen in ihrer natürlichen Umgebung, präsentiert werden. Hierbei gelang erstmals eine exakte Charakterisierung der Proteine, die in der Zellmembran für den Austausch der Elektronen zwischen Bakterie und Elektrode verantwortlich sind.
D. Millo*, F. Harnisch*, S.A. Patil. H. K. Ly, U. Schröder, P. Hildebrandt
“In situ Spectroelectrochemcial Investigation of electrocatalytic microbial biofilms by surface-enhanced resonance raman spectroscopy”

http://onlinelibrary.wiley.com/doi/10.1002/anie.201006046/abstract

Ein weiterer Fortschritt gelang in Kooperation mit den Universitäten Marburg und Chicago: Erstmals wurden Stromdichten von bis zu 30 Ampere pro Quadratmeter gemessen. Diese bisher unerreichten Leistungsfähigkeiten von bioelektrokatalytischen Anoden konnten durch neuartige Elektrodenmaterialien erzielt werden. Auf ihnen können die Mikroorganismen in drei Dimensionen wachsen und gedeihen.
Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells
Shuiliang Chen, Haoqing Hou, Falk Harnisch, Sunil A. Patil, Alessandro A. Carmona-Martinez, Seema Agarwal, Yiyun Zhang, Suman Sinha-Ray, Alexander L. Yarin, Andreas Greiner and Uwe Schröder
Energy and Environmental Science, online
http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C0EE00446D
Darüber hinaus wurde in Zusammenarbeit mit dem Helmholtz Zentrum für Umweltforschung, Leipzig, die erste durchflusszytometrische Studie an elektrokatalytischen Biofilmen durchgeführt. Bei diesem Verfahren werden Zellen gezählt und charakterisiert. Dabei zeigte ein Vergleich von Abwasser und daraus gewonnenen elektrokatalytischen Biofilmen, dass eine Selektion von Mikroorganismen stattfindet. Diese Selektion führt dabei zu einer Anreicherung von Arten im Biofilm, die in der Bakterienquelle nicht nachweisbar ist.
F. Harnisch*, C. Koch, S.A. Patil. T. Hübschmann, S. Müller, U. Schröder
“Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow–cytometry” Energy & Environmental Science, online

http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C0EE00605J

In Zusammenwirken können diese Erkenntnisse des Braunschweiger Forscherteams aus unterschiedlichen Teilgebieten sowohl zu einem besseren fundamentalem Verständnis der mikrobiellen Prozesse als auch zur weiteren Entwicklung der Technologie beitragen.

Kontakt
Prof. Dr. Uwe Schröder
Institut für Ökologische und Nachhaltige Chemie
E-Mail: uwe.schroeder@tu-braunschweig.de
Tel.: +49(0)531 391 8425
Dr. Falk Harnisch
Institut für Ökologische und Nachhaltige Chemie
E-Mail: f.harnisch@tu-braunschweig.de
Tel.: +49(0)531 391 8428

Ulrike Rolf | idw
Weitere Informationen:
http://www.tu-braunschweig.de/oekochemie/akschroeder

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics