Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritte bei der Nutzung von Mikroorganismen für die Erzeugung von elektrischer Energie

01.03.2011
Weltweit erforschen Wissenschaftlerteams, wie man Mikroorganismen zur Energiegewinnung nutzen kann. An der Technischen Universität Braunschweig ist das Team von Prof. Dr. Uwe Schröder diesem Ziel näher gekommen. Die Ergebnisse dieser Forschung sind jetzt in drei Artikeln renommierter Fachzeitschriften veröffentlicht worden.

Das Braunschweiger Forscherteam beschäftigt sich seit längerem mit elektrokatalytisch aktiven Bakterien. Ziel ist es, mit Hilfe dieser Biofilme eine neue Technologie zu entwickeln. Sie soll es unter anderem ermöglichen, niedrigenergetische Biomasse, wie zum Beispiel Abwasser, zur Gewinnung von elektrischer Energie oder zur Produktion von wertvollen Grundstoffen zu nutzen. Dieses Technologiekonzept ist seit längerem unter dem Schlagwort „mikrobielle Brennstoffzelle“ oder „mikrobielle Bioelektrochemische Systeme“ bekannt.

Der Weg vom im Labormaßstab erfolgreichen Konzept zur fertigen Technologie ist allerdings noch lang. Es müssen noch fundamentale und technologische Fragen beantwortet werden. Drei Bausteine auf diesem Weg können jetzt die Forscher aus Braunschweig in Zusammenarbeit mit externen Kooperationspartnern beisteuern.

In Zusammenarbeit mit der TU Berlin unter Federführung von Dr. Falk Harnisch, TU Braunschweig, und Dr. Diego Millo, TU Berlin, konnte erstmals eine in situ spektroelektrochemische Untersuchung an lebenden Biofilmen, das heißt Zellen in ihrer natürlichen Umgebung, präsentiert werden. Hierbei gelang erstmals eine exakte Charakterisierung der Proteine, die in der Zellmembran für den Austausch der Elektronen zwischen Bakterie und Elektrode verantwortlich sind.
D. Millo*, F. Harnisch*, S.A. Patil. H. K. Ly, U. Schröder, P. Hildebrandt
“In situ Spectroelectrochemcial Investigation of electrocatalytic microbial biofilms by surface-enhanced resonance raman spectroscopy”

http://onlinelibrary.wiley.com/doi/10.1002/anie.201006046/abstract

Ein weiterer Fortschritt gelang in Kooperation mit den Universitäten Marburg und Chicago: Erstmals wurden Stromdichten von bis zu 30 Ampere pro Quadratmeter gemessen. Diese bisher unerreichten Leistungsfähigkeiten von bioelektrokatalytischen Anoden konnten durch neuartige Elektrodenmaterialien erzielt werden. Auf ihnen können die Mikroorganismen in drei Dimensionen wachsen und gedeihen.
Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells
Shuiliang Chen, Haoqing Hou, Falk Harnisch, Sunil A. Patil, Alessandro A. Carmona-Martinez, Seema Agarwal, Yiyun Zhang, Suman Sinha-Ray, Alexander L. Yarin, Andreas Greiner and Uwe Schröder
Energy and Environmental Science, online
http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C0EE00446D
Darüber hinaus wurde in Zusammenarbeit mit dem Helmholtz Zentrum für Umweltforschung, Leipzig, die erste durchflusszytometrische Studie an elektrokatalytischen Biofilmen durchgeführt. Bei diesem Verfahren werden Zellen gezählt und charakterisiert. Dabei zeigte ein Vergleich von Abwasser und daraus gewonnenen elektrokatalytischen Biofilmen, dass eine Selektion von Mikroorganismen stattfindet. Diese Selektion führt dabei zu einer Anreicherung von Arten im Biofilm, die in der Bakterienquelle nicht nachweisbar ist.
F. Harnisch*, C. Koch, S.A. Patil. T. Hübschmann, S. Müller, U. Schröder
“Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow–cytometry” Energy & Environmental Science, online

http://pubs.rsc.org/en/Content/ArticleLanding/2011/EE/C0EE00605J

In Zusammenwirken können diese Erkenntnisse des Braunschweiger Forscherteams aus unterschiedlichen Teilgebieten sowohl zu einem besseren fundamentalem Verständnis der mikrobiellen Prozesse als auch zur weiteren Entwicklung der Technologie beitragen.

Kontakt
Prof. Dr. Uwe Schröder
Institut für Ökologische und Nachhaltige Chemie
E-Mail: uwe.schroeder@tu-braunschweig.de
Tel.: +49(0)531 391 8425
Dr. Falk Harnisch
Institut für Ökologische und Nachhaltige Chemie
E-Mail: f.harnisch@tu-braunschweig.de
Tel.: +49(0)531 391 8428

Ulrike Rolf | idw
Weitere Informationen:
http://www.tu-braunschweig.de/oekochemie/akschroeder

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie