Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritte in der medikamentösen Behandlung von Entzündungen

10.07.2013
Forscher der Universität Basel haben eine neue Klasse von Selectin-Antagonisten als Lead-Strukturen für entzündungshemmende Medikamente identifiziert. Ihre Forschungsresultate wurden kürzlich in der Fachzeitschrift «Journal of the American Chemical Society» veröffentlicht.

Selectine wurden in den frühen 1990er-Jahren entdeckt. Sie gehören zu den Lectinen vom Typ C. Ihre biologische Bedeutung konnte in zahlreichen Forschungsarbeiten dokumentiert werden. Selectine sind ein vielversprechendes therapeutisches Ziel bei Krankheiten, welche sich pathophysiologisch über das Austreten von Zellen aus dem Blutstrom oder die Migration von Lymphozyten definieren.

Sialyl-Lewisx (sLex) ist das kleinste Kohlenhydrat-Epitop, das von E-Selectin erkannt wird. Die Wechselwirkung von sLex mit E-Selectin ist durch geringe Affinität und eine kurze Halbwertszeit des Komplexes im Sekunden-Bereich gekennzeichnet. Ursächlich ist die flache und für Wasser leicht zugängliche Bindungsstelle von E-Selectin. Während diese Charakteristika eine Voraussetzung für die physiologische Funktion von E-Selectin sind, gestalten sie die Entwicklung von Selectin-Antagonisten für therapeutische Anwendungen äusserst schwierig.

Die niedrige Affinität der sLex/E-Selectin-Interaktion stellt ein Haupthindernis für die Entwicklung von Selectin-Antagonisten als entzündungshemmende Medikamente dar. Deshalb ersetzte die Arbeitsgruppe von Prof. Ernst die Kohlenhydrat-Strukturen durch sogenannte Mimetika. Dies sind Verbindungen ohne die nachteiligen pharmakodynamischen und pharmakokinetischen Eigenschaften von Kohlenhydraten. Obwohl in den vergangenen Jahren zahlreiche Beiträge über sLex-Mimetika mit deutlich verbesserten Affinitäten veröffentlicht wurden, besteht weiterhin ein Bedarf an E-Selectin-Antagonisten mit hoher Affinität und langsamen Dissoziationsraten.

Vielversprechender Fragment-basierter Ansatz
In einem kürzlich erschienenen Artikel im «Journal of the American Chemical Society» beschreibt die Arbeitsgruppe von Prof. Beat Ernst an der Universität Basel einen Fragment-basierten Ansatz. Mittels Kernresonanzspektroskopie wurden Fragmente identifiziert, die nahe der sLex-Bindungsstelle an das Protein binden. Anschliessend wurden die besten Fragmente über Triazol-Linker unterschiedlicher Länge mit einem sLex -Mimetikum verknüpft. Mittels Oberflächenplasmonresonanz-Spektroskopie wurde ihre Bindungsaffinität zu E-Selectin bestimmt. Als Resultat konnten mehrere hochaffinine E-Selectin-Antagonisten identifiziert werden.

Die detaillierte Analyse der fünf aussichtsreichsten Kandidaten lieferte Antagonisten mit Bindungsaffinitäten im nanomolaren Bereich. Zusätzlich wurden für den Komplex, bestehend aus E-Selectin und den Fragment-basierten Selectin-Antagonisten, Halbwertszeiten von mehreren Minuten beobachtet. Diese neue Klasse von Selectin-Antagonisten bildet einen vielversprechenden Ausgangspunkt für die Entwicklung von entzündungshemmenden Medikamenten.

Breitere Anwendungen
Prof. Beat Ernst und sein Team forschen seit vielen Jahren auf dem Gebiet der Selectine. In Zusammenarbeit mit GlycoMimetics, Inc., hat die Arbeitsgruppe vor kurzem erfolgreich einen Selectin-Antagonisten für klinische Studien entwickelt. Mit ihrer neuesten Arbeit liefert sie wertvolle Informationen zu einer neuen Klasse von Selectin-Antagonisten. Zudem können ähnliche Fragment-basierte Ansätze auf andere therapeutisch interessante Lectine angewendet werden, die der Identifizierung von monovalenten hochaffinen Liganden notorisch widerstehen.
Originalbeitrag
Jonas Egger, Céline Weckerle, Brian Cutting, Oliver Schwardt, Said Rabbani, Katrin Lemme, and Beat Ernst
Nanomolar E-Selectin Antagonists with Prolonged Half-Lives by a Fragment-Based Approach

Journal of the American Chemical Society, 2013, 135 (26), pp 9820–9828 | doi: 10.1021/ja4029582

Weitere Auskünfte
Prof. Dr. Beat Ernst, Universität Basel, Pharmazentrum, Klingelbergstrasse 50, 4056 Basel, Tel. +41 61 267 15 51, E-Mail: beat.ernst@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://dx.doi.org/10.1021/ja4029582

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften