Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsprojekt zur tödlichen Bienenkrankheit „Amerikanische Faulbrut“

21.07.2014

Das Forschungsprojekt der Expertin für Molekulare Mikrobiologie Elke Genersch zur „molekularen Pathogenese der Amerikanischen Faulbrut der Honigbiene“ wird von der Deutschen Forschungsgemeinschaft (DFG) mit Mitteln des Stifterverbandes für Deutsche Wissenschaft unterstützt.

Das Vorhaben sei besonders förderungswürdig, erklärte die DFG in Bonn. Elke Generschs Forschungsergebnisse stellten einen Durchbruch in der Bienenpathologie dar und bereiteten „den Weg für eine wirkungsvolle Therapie“, hieß es weiter. Mit der Auszeichnung erhielt Dr. Elke Genersch ein Preisgeld in Höhe von 25.500 Euro, um weitere Faktoren der Krankheit zu erforschen.

„Nur wenn wir die Krankheit verstehen, können wir sie effizient bekämpfen“, sagt Dr. Elke Genersch, Dozentin am Institut für Mikrobiologie und Tierseuchen der Freien Universität Berlin und stellvertretende Direktorin des Länderinstituts für Bienenkunde an der Humboldt-Universität zu Berlin.

Die Amerikanische Faulbrut ist eine Tierseuche, die ganze Bienenvölker vernichten kann. Der Erreger der anzeigepflichtigen Tierseuche ist das Bakterium Paenibacillus larvae (P. larvae). Larven, die eigentlich zu Bienen heranwachsen sollten, werden zu einer schleimigen, fadenziehenden Masse zersetzt. Die Brut und oft auch das Bienenvolk müssen vernichtet werden, um der Seuche Herr zu werden.

Dr. Elke Generschs Arbeiten haben bereits vor einigen Jahren gezeigt, dass es genetisch unterschiedliche Typen von P. larvae gibt. Zwei davon sind weltweit für die Zerstörung von Bienenvölkern verantwortlich: ERIC I und ERIC II. Ein offensichtlicher Unterschied zwischen den beiden Genotypen ist der Krankheitsverlauf: ERIC II tötet die Larven schneller als ERIC I. Warum das so ist, will die Molekularbiologin in der Fortsetzung ihres DFG-Projektes zur molekularen Pathogenese der Amerikanischen Faulbrut herausfinden.

Dr. Elke Genersch und ihr Forschungsteam hatten 2008 auch den Infektions-Mechanismus der tödlichen Bienenkrankheit entdeckt: Der Erreger bevölkert den Mitteldarm der Larve und lebt vom Futter, das die Larve aufnimmt. Ist der Larvendarm bis zum Platzen mit den Bakterien gefüllt, durchbrechen diese die Darmwand und gelangen in das umliegende Gewebe. ERIC I dringt mithilfe von Giftstoffen durch die Darmwand. ERIC II hat einen anderen Mechanismus entwickelt: Er bildet ein sogenanntes Surface-Layer-Protein auf seiner Zelloberfläche, mit dem er sich an die Darmzellen der Larve heftet und dort die Verbindungen zwischen den Epithelzellen zerstört.

Elke Genersch will weitere Faktoren identifizieren, die das Bakterium so gefährlich machen und die die Virulenzunterschiede bedingen, um die Pathogenese dieser todbringenden Seuche zu verstehen. Sie will auch erforschen, wo das Bakterium herkommt und wie es verbreitet wird.

Ansprechpartnerin

PD Dr. Elke Genersch, Dozentin am Fachbereich für Veterinärmedizin der Freien Universität Berlin, E-Mail: elke.genersch@fu-berlin.de sowie Stellvertretende Direktorin des Länderinstituts für Bienenkunde an der Humboldt-Universität zu Berlin, Telefon: 03303 / 293833, E-Mail: elke.genersch@hu-berlin.de

Weitere Informationen:

http://www.vetmed.fu-berlin.de - Fachbereich Veterinärmedizin der Freien Universität Berlin; http://www2.hu-berlin.de/bienenkunde - Länderinstitut für Bienenkunde der Humboldt-Universität zu Berlin

Nicole Körkel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie