Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsergebnis: Ohne Zellwand – keine Chance für Tuberkulosebakterium

22.06.2010
Tuberkulose auf dem Vormarsch: Immer mehr Stämme des Erregers haben in den vergangenen Jahren Resistenzen gegen bereits vorhandene Medikamente entwickelt. Neue Wirkstoffe werden daher dringend benötigt.

Ein Team von Wissenschaftlern um Prof. Dr. Caroline Kisker, Gruppenleiterin am Rudolf-Virchow-Zentrum in Würzburg, hat nun einen viel versprechenden neuen Wirkstoff entwickelt. Er soll es dem Bakterium unmöglich machen, seine Zellwand zu bilden und so den Erreger abtöten. Dabei heraus gekommen ist ein Hemmstoff, der etwa 14.000-mal länger bindet, als bisherige Substanzen und somit deutlich besser wirkt. Die Ergebnisse wurden in der Zeitschrift Journal of Biological Chemistry veröffentlicht.

Mutationen im Erbgut ermöglichen es Bakterien Resistenzen gegen Antibiotika zu entwickeln. Die Erreger nutzen diese Methode, um sich an ständig wechselnde Umweltbedingungen anzupassen. So gelingt es ihnen, auch die Wirkung von antibiotischen Substanzen abzuschwächen bzw. ganz zu neutralisieren. Doch nicht alle Mutationen können toleriert werden. Manche Vorgänge sind so entscheidend für das Überleben der Bakterien, dass die Gene nahezu dauerhaft konstant bleiben.

So auch bei der Biosynthese der Zellwand. Bei Mycobacterium tuberculosis, dem Erreger der Tuberkulose, besteht die Zellwand zum Großteil aus Mykolsäuren, sehr langkettigen Fettsäuren, die den Bakterien Schutz bieten und ihnen ermöglichen, in Makrophagen (Fresszellen), die die Bakterien eigentlich zerstören sollen, zu überleben. InhA ist eines der Enzyme, das an der Herstellung dieser Fettsäureketten beteiligt ist. Die Fettsäuren werden im Enzym in einer so genannten Substrattasche hergestellt. Genau hier hat das Team von Prof. Dr. Caroline Kisker, angesetzt. Ziel war es, einen Wirkstoff zu kreieren, der diese Substrattasche blockiert, möglichst lange darin haften bleibt und so wirksam die Bildung der Zellwand verhindert.

Ein bereits existierender Hemmstoff, Triclosan, diente den Wissenschaftlern dabei als Grundlage. Zwar hemmt diese Substanz ebenfalls das Enzym InhA, passt jedoch nur recht unspezifisch in die Subtrattasche und lässt sich daher leicht wieder heraus drücken. Mit Hilfe der Strukturbiologen um Prof. Dr. Caroline Kisker war es nun möglich, einen effektiveren Wirkstoff zu entwickeln. Diese Teildisziplin der Biologie ermöglicht es, Proteine bis auf einzelne Atome genau darzustellen. Anhand dieser Abbildung lassen sich heute Wirkstoffe entwickeln, die von der Größe und dem Aufbau noch besser an das Enzym binden. Heraus gekommen ist ein neuer Wirkstoff namens PT70. Er ist länger als der bisherige Wirkstoff Triclosan und reicht noch weiter in die Substrattasche hinein. Eine optimierte Zusammensetzung bewirkt zusätzlich, dass PT70 noch besser an das Enzym InhA bindet. Zudem schafft es der neue Wirkstoff, ähnlich wie die Fettsäure die Substrattasche zu schließen – ein entscheidendes Kriterium für die Wirksamkeit.

Alle Faktoren zusammen bewirken, dass PT70 rund 24 Minuten an das Enzym gebunden bleibt. Das ist etwa 14.000 Mal länger als bei bisherigen Substanzen wie Triclosan und sollte deshalb als Medikament wesentlich wirksamer sein als die im Vergleich nur kurz gebundenen Substanzen.

Rund acht Millionen Menschen erkranken jährlich an Tuberkulose, zwei Millionen sterben daran. Auch in den westlichen Industrienationen hat die Krankheit wieder Einzug gehalten. Alleine in Deutschland erkranken jedes Jahr über 4.000 Menschen. Das Problem: Viele Erreger sind gegen die bereits vorhandenen Antibiotika resistent geworden und seit Jahren wurde kein neues Tuberkulose-Medikament mehr entwickelt, das gegen die resistenten Erreger wirksam ist. Diese multiresistenten und extrem resistenten Stämme machen die Behandlung von Patienten zu einem langwierigen und sehr teuren Prozess und deswegen ist die Entwicklung neuer Medikamente gegen Tuberkulose dringend erforderlich.

Das Rudolf-Virchow-Zentrum ist ein DFG-Forschungszentrum für Experimentelle Biomedizin und gehört als Zentrale Einrichtung zur Universität Würzburg. Im Januar 2002 ging es als eines von drei im Sommer 2001 bewilligten Pilotprojekten an den Start, mit denen die Deutsche Forschungsgemeinschaft nationale "Centers of Excellence" fördern will. In den drei Bereichen Nachwuchsgruppeninstitut, Kernzentrum und Forschungsprofessuren arbeiten zurzeit acht Arbeitsgruppen auf dem Gebiet der Schlüsselproteine. Das sind Proteine, die für die Funktion von Zellen und damit für Gesundheit und Krankheit besonders wichtig sind.

Luckner SR, Liu N, am Ende CW, Tonge PJ, Kisker C. (2010) A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J Biol Chem. 285(19):14330-7.

Kristina Kessler | idw
Weitere Informationen:
http://www.jbc.org/content/285/19/14330.long

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen