Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung mit Tunnelblick – 3D-Bilder zeigen Integration von Proteinen in die Zellmembran

18.04.2011
Jede Zelle ist umgeben und durchzogen von Membranen, in die zahlreiche Proteine eingebettet sind.

Ein internationales Team um Dr. Jens Frauenfeld und Professor Roland Beckmann vom Genzentrum und Department für Biochemie der LMU München und dem Exzellenzcluster „Center for Integrated Protein Science Munich“ (CiPSM) stellt nun eine neue Methode vor, mit deren Hilfe der Einbau eines solchen Proteins in die Membran erstmals unter natürlichen Bedingungen untersucht werden konnte.

Die Integration beginnt bereits während der Proteinsynthese am Ribosom: Diese zelluläre Proteinfabrik setzt sich auf einen die Membran durchspannenden Transportkanal und führt das neu entstehende Protein in ihn ein. Über eine seitliche Öffnung entlässt der Kanal das Protein dann in die Membran, wie die Forscher in hoch aufgelösten 3D-Bildern erstmals zeigen konnten.

Die neue Methode birgt großes Potenzial: Membranproteinintegration und therapeutisch aktive molekulare Inhibitoren, die den Proteintransport blockieren, könnten im Detail verstanden und gegebenenfalls optimiert werden, wenn ihr Wirkmechanismus hoch aufgelöst und in 3D abgebildet werden kann. (Nature Structural and Molecular Biology online, 17. April 2011)

Fast ein Drittel aller zellulären Proteine werden sekretiert oder als „integrale Membranproteine“ in Zellmembranen eingebaut. Diese Zellmembranen bestehen allerdings aus einer Lipid-Doppelschicht, die von geladenen Molekülen wie Proteinen kaum direkt zu durchdringen sind. Für die Integration dieser Moleküle in die Zellmembran nutzt die Zelle deshalb molekulare Tore, die sich öffnen können. Diese Translokons befinden sich in Transportkanälen, die die Membran durchdringen und auch für den Im- und Export von Proteinen genutzt werden. „Je nachdem welche Signalsequenz ein Protein trägt, entscheidet sich, welchen Weg es nimmt“, erklärt Beckmann.

Bislang konnten diese Prozesse nicht direkt in der Zellmembran untersucht werden. „Das ist so problematisch, weil viele Membranproteine in ihrer Funktion auf eine Lipid-Doppelschicht als Umgebung angewiesen sind“, betont Frauenfeld. Im Team mit internationalen Kollegen entwickelten er und Beckmann nun eine Methode, die den Einbau von Membranproteinen unter natürlichen Bedingungen strukturell untersuchen lässt. Der Schlüssel zum Erfolg waren sogenannte Nanodiscs. Das sind kleine Scheibchen aus einer Lipid-Doppelschicht, die von einem ringförmigen Protein zusammengehalten werden.

In die Nanodiscs bauten die Forscher einen universellen Protein-Transportkanal ein, auf dem ein Ribosom saß und ein neu entstehendes Protein einfädelte. „Wir konnten mittels dreidimensionaler Kryo-Elektronenmikroskopie eine Nanodisc im Bild festhalten und das Protein in der Membran hoch aufgelöst erkennen – was an sich schon ein großer Erfolg ist“, so Frauenfeld. „In der 3D-Rekonstruktion gelang uns dann aber auch noch ein Schnappschuss, der das Protein im Tor beim Übergang in die Membran zeigt.“ Zudem konnten die Wissenschaftler erstmals eine Interaktion zwischen Ribosom und Lipiden nachweisen, die den Einbau der Proteine in die Membran unter geringem Energieaufwand erlaubt.

Der Transport von Proteinen durch Membranen hindurch spielt unter anderem bei der Entstehung von Entzündungen und auch bei Krebs eine Rolle. Schon jetzt werden molekulare Inhibitoren zur Hemmung des Proteintransports in und durch Membranen eingesetzt. Wirkstoffe wie das synthetische Peptid Cotransin blockieren dabei auch den Transportkanal. Frauenfeld und Beckmann sehen deshalb auch therapeutisches Potenzial in ihrer Methode: Durch eine verbesserte 3D-Darstellung der Transportvorgänge in einer natürlichen Membran könnte der Wirkmechanismus dieser Inhibitoren genauer untersucht und optimiert werden. Dies könnte die Suche nach neuen Therapieansätzen erleichtern, so die Hoffnung der Forscher. (göd)

Die Untersuchung entstand im Rahmen des Exzellenzclusters Center for Integrated Protein Science Munich (CIPSM) sowie der SFB 594 (Molecular Machines) und 646 (Regulatory Networks in Gene Expression and Maintenance). Jens Frauenfeld erhielt für dieses Projekt von der zum Pharmakonzern Roche gehörenden ROMIUS-Stiftung den mit 1.000 Euro dotierten Preis für Wissenschaft und Forschung.

Publikation:

„Cryo-EM structure of the ribosome-SecYE complex in the membrane environment”;
J. Frauenfeld, J. Gumbart, E.O. van der Sluis, S. Funes, M. Gartmann, B. Beatrix, T. Mielke, O. Berninghausen, T. Becker, K. Schulten, R. Beckmann;
Nature Structural and Molecular Biology, Advance Online Publication, 17 April 2011;

doi:10.1038/nsmb.2026

Ansprechpartner:
Prof. Dr. Roland Beckmann
Genzentrum und Department für Chemie und Biochemie der LMU und
Exzellenzcluster „Center for Integrated Protein Science Munich“ (CIPSM)
Tel.: 089/2180 – 76900
E-Mail: beckmann@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmb.uni-muenchen.de/beckmann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften