Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung Biogas: Neue Anlagen sollen Multifunktionsanlagen sein

08.01.2014
Energie, Designdünger, Basischemikalien: Künftige Biogasanlagen sollen mehr als nur Energie produzieren.

Universität Hohenheim und Fraunhofer IGB, Stuttgart, erforschen ganzheitliche Optimierung der Biogas-Prozesskette (GOBi) / Vier Industriepartner beteiligt

Strom, Gas, Wärme, eine optimale Pflanzenproduktion, Designdünger und wertvolle Basischemikalien für die Industrie – in Stuttgart arbeiten Wissenschaftler der Universität Hohenheim und des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB zusammen mit Industriepartnern an einer nachhaltigen Biogasproduktion, bei der alle Prozessschritte vom Pflanzenbau bis zur Verwertung anfallender Reststoffe untersucht werden. Das Bundesforschungsministerium fördert das Projekt „Ganzheitliche Optimierung der Biogasprozesskette“ (GOBi) drei Jahre lang mit insgesamt 3,9 Millionen Euro.

Im Zuge der Energiewende soll die Stromerzeugung aus erneuerbaren Quellen in Deutschland kontinuierlich ausgebaut werden. Biogasanlagen sind dabei ein wichtiger dezentraler Baustein.

Zwar sind viele einzelne Prozesse in Biogasanlagen vergleichsweise gut erforscht. „Es besteht aber besonderer Forschungsbedarf darin, die Biogasproduktion als Ganzes möglichst effektiv zu gestalten, um die Ausbeute zu verbessern“, sagt Projektleiter Prof. Dr. Joachim Müller an der Universität Hohenheim.

Das Projekt beginnt beim Anbau von Energiepflanzen auf dem Acker und endet bei den Reststoffen der Biogasproduktion – für die es vielseitige Verwendung gibt. „Unser Ziel ist es, die Biomasse der Pflanzen, die zu Biogas vergoren werden, möglichst vollständig zu nutzen. So erforschen wir, wie sich Restprodukte optimal als Dünger verwenden lassen und in wie weit Nebenprodukte anfallen, die zum Beispiel für die chemische Industrie interessant wären“, führt Prof. Dr. Iris Lewandowski, Universität Hohenheim, aus.

Mit ihrer Forschung wollen die Wissenschaftler von Universität Hohenheim und Fraunhofer IGB auch einen Beitrag hin zu einer neuen Bioökonomie leisten. Ziel der sogenannten Bioökonomie ist es, die Abhängigkeit der Wirtschaft von Erdöl und anderen fossilen Rohstoffen durch die Nutzung natürlicher Ressourcen für Nahrungsmittel, Energieträger und Industrierohstoffe zu ersetzen.

Optimaler Anbau für eine optimale Ausbeute

Der eigentliche Optimierungsprozess beginnt bereits auf dem Acker. Denn wie viel Biogas eine Pflanze liefert, hängt nicht nur von der Pflanzenart ab – sondern auch davon, wo und wie sie angebaut wird. Je nachdem wie Boden und Klima beschaffen sind oder wann und wie gedüngt wurde, sind die Ergebnisse verschieden.

Um optimale Anbaumethoden zu entwickeln, experimentieren die Wissenschaftler der Universität Hohenheim mit verschiedenen Pflanzen: neben Mais gehören dazu auch Pflanzen wie Amaranth oder Miscanthus, die derzeit als Energiepflanzen noch ein Nischendasein führen.

Maßgeschneiderte Designdünger

Da bei der Energiepflanzen-Produktion ein hoher Ertrag im Vordergrund steht, werden erhebliche Mengen Dünger benötigt. Den Dünger, den jede Pflanze in anderer Zusammensetzung benötigt, wollen die Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB maßschneidern: Mit Rohstoffen, die in der Biogasanlage selbst entstehen.

Dazu trennen sie die Gärreste der Biogasanlage in seine festen und seine flüssigen Bestandteile. Aus der flüssigen Phase wollen die Forscher wertvolle Phosphor- und Stickstoffsalze zurückgewinnen, die den Pflanzen als Nährstoffe dienen.

Die Feststoffe werden weiter getrocknet. Dies geschieht zum Beispiel mit einem energieeffizienten Verfahren mittels überhitzten Wasserdampfs. Übrig bleibt eine trockene, organische Masse.

„Je nach Pflanzenbedarf setzen wir dann die Nährstoffe aus der Flüssigkeit mit der getrockneten organischen Masse zu einem Designdünger zusammen“, erläutert Jennifer Bilbao, die das Projekt am Fraunhofer IGB leitet. Wie sich welcher Dünger für welche Pflanze idealerweise zusammensetzt, gehört auch zu den Forschungsfragen. Die Antwort sollen Düngeversuche im Labor und an den Versuchsstandorten der Universität Hohenheim bringen.

Gewinnbringender Klimaschutz

Der Ansatz, möglichst alle Produkte entlang der Prozesskette zu nutzen, trägt auch zum Klimaschutz bei. Bislang werden die Gärprodukte aus der Biogasanlage so getrocknet, dass leichtflüchtige Gase wie Ammoniak in die Atmosphäre gelangen können.

Mit unterschiedlichen Verfahren versuchen Arbeitsgruppen der Universität Hohenheim und des Fraunhofer IGB, die Ammoniakdämpfe zurückzugewinnen. Denn auch hieraus lässt sich wertvoller Dünger gewinnen.

Natürliche Basischemikalien für die chemische Industrie

Weitere wertvolle Rohstoffe wollen die Forscher aus Nebenprodukten bei der Pflanzenaufbereitung gewinnen. Denn bevor die Energiepflanzen in der eigentlichen Anlage zu Biogas vergären, werden sie vorbehandelt. Bei der sogenannten Silage zerlegen Bakterien das komplexe Pflanzenmaterial in einfachere Verbindungen, darunter Milchsäure, Essigsäure und Buttersäure.

Diese (Karbon-)Säuren sind nicht nur nützlich für die Biogasproduktion. Milchsäure wird in der Lebensmittelindustrie als Säuerungsmittel eingesetzt, ist antibakterieller Zusatz von Reinigungsmitteln oder dient – wie auch die Essigsäure – zur Produktion von Biokunststoffen.

Ein Teilprojekt am Fraunhofer IGB untersucht deshalb auch, ob während der Silage sogenannte Sickersäfte mit einem hohen Anteil dieser Säuren entsteht – und ob es sich rechnet, diese Chemikalien aus dem Sickerwasser zu gewinnen.

„Vielleicht ist das heute noch Zukunftsmusik. Aber in dem Maß, in dem der Ölpreis steigt, wächst der Markt für Chemikalien aus Biomasse“, sagt Jennifer Bilbao.

Bessere Energieausbeute

Gleichzeitig versucht das Projekt, die Kernprozesse bei der Gasproduktion zu verbessern. Ziel ist es, die Ausbeute zu erhöhen und die Produktionszeit zu verkürzen. Hierzu analysieren die Wissenschaftler, wie sich die jeweilige Zusammensetzung der Silage auf die Biogasproduktion auswirkt und vergleichen verschiedene technische Varianten – etwa eine einstufige im Vergleich zu einer zweistufigen Betriebsweise.

Zugleich begeben sich die Forscher in den Mikrokosmos des Gärprozesses. Denn bei der Umwandlung von Biomasse zu Gas wirkt eine Vielzahl verschiedener Mikroorganismen auf komplexe Weise zusammen. Hier wollen die Forscher erkunden, wie sich das Zusammenspiel unterstützen lässt – zum Beispiel, indem sie bestimmte Mikroorganismen gezielt hinzugeben, mit Nährstoffen füttern oder ihnen die Arbeit durch Enzyme erleichtern.

Voraussetzung dafür ist ein Kontrollsystem, über das sich ermitteln lässt, welche Bakterien wie stark an welchem Prozessschritt beteiligt sind. Mit einem Mikroskop wären die vielen 1.000 Untersuchungen nicht zu bewältigen. Deshalb identifizieren die Wissenschaftler die Bakterien einfach an ihrem Erbgut. Dazu nehmen die IGB-Forscher eine Probe aus dem Silo oder dem Gärtank, analysieren das Erbgut aller Bakterien darin auf einmal und ermitteln aus diesen Bausteinen, welche Bakterien in der Probe waren.

Bei dieser Methode entstehen allerdings Datenbanken mit gigantischen Datenmengen. Für die Auswertung kooperieren die Forscher mit der Firma Genedata. „Die Datenbanken durchforsten wir mit speziellen Computerprogrammen, um die beteiligten Mikroorganismen zu identifizieren“, erklärt Thomas Hartsch von Genedata. Ein Gebiet, auf dem Genedata sowohl Ausstattung als auch wertvolle Expertise bereithält.

Ökobilanz überprüft den Gesamtprozess

Wie effizient die Anlage arbeitet, überprüfen die Wissenschaftler mit einer Ökobilanz. Dabei vergleichen sie den Energiebedarf für den Bau, den Betrieb und den Abriss der Biogasanlage mit der Energie, die die Anlage in ihrem gesamten Betriebsleben produziert. Durch den Blick auf Detailabschnitte wollen sie herausfinden, wo weiterer Optimierungsbedarf besteht.

Parallel dazu erarbeiten sie ein Computermodell des ganzen Produktionsprozesses. Dadurch wären auch Prognosen möglich, wie sich Biogasanlagen durch verschiedene Betriebsvarianten verändern könnten.

Hintergrund: Projekt „Ganzheitliche Optimierung der Biogasprozesskette“ (GOBi)

Federführend in diesem Forschungsprojekt ist die Universität Hohenheim in Stuttgart mit dem Institut für Agrartechnik (Projektleitung), dem Institut für Kulturpflanzenwissenschaft und der Landesanstalt für Agrartechnik. Als weitere Partner sind das Stuttgarter Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, die Münchner Firma Genedata sowie die Firma Geltz Umwelt-Technologie GmbH beteiligt. Das Bundesministerium für Bildung und Forschung fördert das Projekt „Ganzheitliche Optimierung der Biogasprozesskette zur Steigerung der betrieblichen, stofflichen, energetischen und ökologischen Effizienz unter besonderer Berücksichtigung der Produktion eines natürlichen kundenspezifischen Düngemittels“ innerhalb des Rahmenprogramms „BioProFi – Bioenergie – Prozessorientierte Forschung und Innovation“.

Kontakt für Medien:
Dr. Klaus Meissner, Universität Hohenheim, Fg. Agrartechnik in den Tropen und Subtropen

Tel.: 0711/459-22491, E-Mail: meissner@uni-hohenheim.de

Dr. Claudia Vorbeck, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Tel.: 0711/970-4031, E-Mail: claudia.vorbeck@igb.fraunhofer.de

Text: Klebs

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz