Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung Biogas: Neue Anlagen sollen Multifunktionsanlagen sein

08.01.2014
Energie, Designdünger, Basischemikalien: Künftige Biogasanlagen sollen mehr als nur Energie produzieren.

Universität Hohenheim und Fraunhofer IGB, Stuttgart, erforschen ganzheitliche Optimierung der Biogas-Prozesskette (GOBi) / Vier Industriepartner beteiligt

Strom, Gas, Wärme, eine optimale Pflanzenproduktion, Designdünger und wertvolle Basischemikalien für die Industrie – in Stuttgart arbeiten Wissenschaftler der Universität Hohenheim und des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB zusammen mit Industriepartnern an einer nachhaltigen Biogasproduktion, bei der alle Prozessschritte vom Pflanzenbau bis zur Verwertung anfallender Reststoffe untersucht werden. Das Bundesforschungsministerium fördert das Projekt „Ganzheitliche Optimierung der Biogasprozesskette“ (GOBi) drei Jahre lang mit insgesamt 3,9 Millionen Euro.

Im Zuge der Energiewende soll die Stromerzeugung aus erneuerbaren Quellen in Deutschland kontinuierlich ausgebaut werden. Biogasanlagen sind dabei ein wichtiger dezentraler Baustein.

Zwar sind viele einzelne Prozesse in Biogasanlagen vergleichsweise gut erforscht. „Es besteht aber besonderer Forschungsbedarf darin, die Biogasproduktion als Ganzes möglichst effektiv zu gestalten, um die Ausbeute zu verbessern“, sagt Projektleiter Prof. Dr. Joachim Müller an der Universität Hohenheim.

Das Projekt beginnt beim Anbau von Energiepflanzen auf dem Acker und endet bei den Reststoffen der Biogasproduktion – für die es vielseitige Verwendung gibt. „Unser Ziel ist es, die Biomasse der Pflanzen, die zu Biogas vergoren werden, möglichst vollständig zu nutzen. So erforschen wir, wie sich Restprodukte optimal als Dünger verwenden lassen und in wie weit Nebenprodukte anfallen, die zum Beispiel für die chemische Industrie interessant wären“, führt Prof. Dr. Iris Lewandowski, Universität Hohenheim, aus.

Mit ihrer Forschung wollen die Wissenschaftler von Universität Hohenheim und Fraunhofer IGB auch einen Beitrag hin zu einer neuen Bioökonomie leisten. Ziel der sogenannten Bioökonomie ist es, die Abhängigkeit der Wirtschaft von Erdöl und anderen fossilen Rohstoffen durch die Nutzung natürlicher Ressourcen für Nahrungsmittel, Energieträger und Industrierohstoffe zu ersetzen.

Optimaler Anbau für eine optimale Ausbeute

Der eigentliche Optimierungsprozess beginnt bereits auf dem Acker. Denn wie viel Biogas eine Pflanze liefert, hängt nicht nur von der Pflanzenart ab – sondern auch davon, wo und wie sie angebaut wird. Je nachdem wie Boden und Klima beschaffen sind oder wann und wie gedüngt wurde, sind die Ergebnisse verschieden.

Um optimale Anbaumethoden zu entwickeln, experimentieren die Wissenschaftler der Universität Hohenheim mit verschiedenen Pflanzen: neben Mais gehören dazu auch Pflanzen wie Amaranth oder Miscanthus, die derzeit als Energiepflanzen noch ein Nischendasein führen.

Maßgeschneiderte Designdünger

Da bei der Energiepflanzen-Produktion ein hoher Ertrag im Vordergrund steht, werden erhebliche Mengen Dünger benötigt. Den Dünger, den jede Pflanze in anderer Zusammensetzung benötigt, wollen die Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB maßschneidern: Mit Rohstoffen, die in der Biogasanlage selbst entstehen.

Dazu trennen sie die Gärreste der Biogasanlage in seine festen und seine flüssigen Bestandteile. Aus der flüssigen Phase wollen die Forscher wertvolle Phosphor- und Stickstoffsalze zurückgewinnen, die den Pflanzen als Nährstoffe dienen.

Die Feststoffe werden weiter getrocknet. Dies geschieht zum Beispiel mit einem energieeffizienten Verfahren mittels überhitzten Wasserdampfs. Übrig bleibt eine trockene, organische Masse.

„Je nach Pflanzenbedarf setzen wir dann die Nährstoffe aus der Flüssigkeit mit der getrockneten organischen Masse zu einem Designdünger zusammen“, erläutert Jennifer Bilbao, die das Projekt am Fraunhofer IGB leitet. Wie sich welcher Dünger für welche Pflanze idealerweise zusammensetzt, gehört auch zu den Forschungsfragen. Die Antwort sollen Düngeversuche im Labor und an den Versuchsstandorten der Universität Hohenheim bringen.

Gewinnbringender Klimaschutz

Der Ansatz, möglichst alle Produkte entlang der Prozesskette zu nutzen, trägt auch zum Klimaschutz bei. Bislang werden die Gärprodukte aus der Biogasanlage so getrocknet, dass leichtflüchtige Gase wie Ammoniak in die Atmosphäre gelangen können.

Mit unterschiedlichen Verfahren versuchen Arbeitsgruppen der Universität Hohenheim und des Fraunhofer IGB, die Ammoniakdämpfe zurückzugewinnen. Denn auch hieraus lässt sich wertvoller Dünger gewinnen.

Natürliche Basischemikalien für die chemische Industrie

Weitere wertvolle Rohstoffe wollen die Forscher aus Nebenprodukten bei der Pflanzenaufbereitung gewinnen. Denn bevor die Energiepflanzen in der eigentlichen Anlage zu Biogas vergären, werden sie vorbehandelt. Bei der sogenannten Silage zerlegen Bakterien das komplexe Pflanzenmaterial in einfachere Verbindungen, darunter Milchsäure, Essigsäure und Buttersäure.

Diese (Karbon-)Säuren sind nicht nur nützlich für die Biogasproduktion. Milchsäure wird in der Lebensmittelindustrie als Säuerungsmittel eingesetzt, ist antibakterieller Zusatz von Reinigungsmitteln oder dient – wie auch die Essigsäure – zur Produktion von Biokunststoffen.

Ein Teilprojekt am Fraunhofer IGB untersucht deshalb auch, ob während der Silage sogenannte Sickersäfte mit einem hohen Anteil dieser Säuren entsteht – und ob es sich rechnet, diese Chemikalien aus dem Sickerwasser zu gewinnen.

„Vielleicht ist das heute noch Zukunftsmusik. Aber in dem Maß, in dem der Ölpreis steigt, wächst der Markt für Chemikalien aus Biomasse“, sagt Jennifer Bilbao.

Bessere Energieausbeute

Gleichzeitig versucht das Projekt, die Kernprozesse bei der Gasproduktion zu verbessern. Ziel ist es, die Ausbeute zu erhöhen und die Produktionszeit zu verkürzen. Hierzu analysieren die Wissenschaftler, wie sich die jeweilige Zusammensetzung der Silage auf die Biogasproduktion auswirkt und vergleichen verschiedene technische Varianten – etwa eine einstufige im Vergleich zu einer zweistufigen Betriebsweise.

Zugleich begeben sich die Forscher in den Mikrokosmos des Gärprozesses. Denn bei der Umwandlung von Biomasse zu Gas wirkt eine Vielzahl verschiedener Mikroorganismen auf komplexe Weise zusammen. Hier wollen die Forscher erkunden, wie sich das Zusammenspiel unterstützen lässt – zum Beispiel, indem sie bestimmte Mikroorganismen gezielt hinzugeben, mit Nährstoffen füttern oder ihnen die Arbeit durch Enzyme erleichtern.

Voraussetzung dafür ist ein Kontrollsystem, über das sich ermitteln lässt, welche Bakterien wie stark an welchem Prozessschritt beteiligt sind. Mit einem Mikroskop wären die vielen 1.000 Untersuchungen nicht zu bewältigen. Deshalb identifizieren die Wissenschaftler die Bakterien einfach an ihrem Erbgut. Dazu nehmen die IGB-Forscher eine Probe aus dem Silo oder dem Gärtank, analysieren das Erbgut aller Bakterien darin auf einmal und ermitteln aus diesen Bausteinen, welche Bakterien in der Probe waren.

Bei dieser Methode entstehen allerdings Datenbanken mit gigantischen Datenmengen. Für die Auswertung kooperieren die Forscher mit der Firma Genedata. „Die Datenbanken durchforsten wir mit speziellen Computerprogrammen, um die beteiligten Mikroorganismen zu identifizieren“, erklärt Thomas Hartsch von Genedata. Ein Gebiet, auf dem Genedata sowohl Ausstattung als auch wertvolle Expertise bereithält.

Ökobilanz überprüft den Gesamtprozess

Wie effizient die Anlage arbeitet, überprüfen die Wissenschaftler mit einer Ökobilanz. Dabei vergleichen sie den Energiebedarf für den Bau, den Betrieb und den Abriss der Biogasanlage mit der Energie, die die Anlage in ihrem gesamten Betriebsleben produziert. Durch den Blick auf Detailabschnitte wollen sie herausfinden, wo weiterer Optimierungsbedarf besteht.

Parallel dazu erarbeiten sie ein Computermodell des ganzen Produktionsprozesses. Dadurch wären auch Prognosen möglich, wie sich Biogasanlagen durch verschiedene Betriebsvarianten verändern könnten.

Hintergrund: Projekt „Ganzheitliche Optimierung der Biogasprozesskette“ (GOBi)

Federführend in diesem Forschungsprojekt ist die Universität Hohenheim in Stuttgart mit dem Institut für Agrartechnik (Projektleitung), dem Institut für Kulturpflanzenwissenschaft und der Landesanstalt für Agrartechnik. Als weitere Partner sind das Stuttgarter Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, die Münchner Firma Genedata sowie die Firma Geltz Umwelt-Technologie GmbH beteiligt. Das Bundesministerium für Bildung und Forschung fördert das Projekt „Ganzheitliche Optimierung der Biogasprozesskette zur Steigerung der betrieblichen, stofflichen, energetischen und ökologischen Effizienz unter besonderer Berücksichtigung der Produktion eines natürlichen kundenspezifischen Düngemittels“ innerhalb des Rahmenprogramms „BioProFi – Bioenergie – Prozessorientierte Forschung und Innovation“.

Kontakt für Medien:
Dr. Klaus Meissner, Universität Hohenheim, Fg. Agrartechnik in den Tropen und Subtropen

Tel.: 0711/459-22491, E-Mail: meissner@uni-hohenheim.de

Dr. Claudia Vorbeck, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Tel.: 0711/970-4031, E-Mail: claudia.vorbeck@igb.fraunhofer.de

Text: Klebs

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau