Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher vereinheitlichen Theorien der neuronalen Informationskodierung

20.12.2017

Wissenschaftler am IST Austria und in Paris kombinieren und erweitern bisherige Theorien darüber, wie Neuronen in unseren sensorischen Systemen Informationen selektieren und übertragen | Neue Theorie gibt konkrete Vorhersagen für bisher nicht untersuchte Kodierungssysteme

Digitale Videokameras können unglaublich detailliert aufzeichnen, aber das Speichern all dieser Daten würde sehr viel Platz beanspruchen. Den Ingenieuren stellt sich daher die Frage, wie man ein Video komprimieren, also Informationen entfernen kann, so dass man beim Abspielen den Unterschied nicht bemerkt.


Neuronen in der Netzhaut kodieren die auf sie einströmenden Informationen um sie an das Gehirn weiter zu leiten

IST Austria/Birgit Rieger

Mit einem ähnlichen Problem sind auch unsere Augen konfrontiert: sie werden mit visuellen Informationen überflutet, aber die Möglichkeiten der Neuronen in unseren Augen sind begrenzt. Wie also wählen Neuronen aus dieser Menge an Reizen aus, welche Information extrahiert und an das Gehirn gesendet wird? Neurowissenschaftler stellen sich diese Frage seit Jahrzehnten und haben verschiedene Theorien entwickelt, um vorherzusagen, was Neuronen in bestimmten Situationen tun werden.

Jetzt haben Matthew Chalk (ehemals Postdoc am IST Austria und derzeit am Vision Institute in Paris), IST Austria-Professor Gašper Tkačik sowie Olivier Marre, der ein Netzhautforschungslabor am Vision Institute leitet, ein Rahmenwerk entwickelt, das die vorherigen Theorien als Sonderfälle verbindet. Es ermöglicht den Forschern auch, Vorhersagen über jene Arten von Neuronen zu machen, die bisher von keiner Theorie beschrieben wurden.

Eines der Hauptziele der sensorischen Neurowissenschaften besteht darin, neuronale Reaktionen durch mathematische Modelle vorherzusagen. Diese Vorhersagen basierten bisher auf drei Haupttheorien, von denen jede ein anderes Anwendungsgebiet hatte. Jedes entsprach unterschiedlichen Annahmen über die internen Beschränkungen der Neuronen, die Art des Signals und den Zweck der gesammelten Information. Ein neuronaler Code ist im Wesentlichen eine Funktion die voraussagt, wann ein Neuron "feuern" wird. Das Aktionspotential-Signal entspricht dabei einer digitalen "1" im Binärsystem.

Sammlungen von einem oder mehreren Neuronen, die zu bestimmten Zeiten feuern, können somit Informationen codieren. Eine effiziente Kodierung setzt voraus, dass die Neuronen unter Berücksichtigung ihrer internen Beschränkungen wie zum Beispiel Rauschen oder Metabolismus, so viel Information wie möglich kodieren. Vorhersagende Kodierung dagegen setzt voraus, dass nur jene Information kodiert wird, die für die Vorhersage der Zukunft relevant ist, zum Beispiel in welche Richtung ein Insekt fliegen wird.

Schlussendlich nimmt „sparse coding“ (die spärliche Kodierung) an, dass nur einige Neuronen gleichzeitig aktiv sind. Allerdings war unklar, inwieweit diese Theorien verwandt waren und ob sie vielleicht sogar miteinander übereinstimmten. Diese neuesten Entwicklungen bringen nun Ordnung in die theoretische Landschaft: "Bisher wusste man nicht, wie man diese Theorien verbinden oder vergleichen kann. Unser Rahmenwerk überwindet das indem es sie innerhalb einer übergreifenden Struktur zusammenfügt", erklärt Gašper Tkačik.

Im Kontext dieses Rahmenwerks kann ein neuronaler Code als der Code interpretiert werden, der eine bestimmte mathematische Funktion maximiert. Diese Funktion - und der neuronale Code, der sie maximiert - hängt von drei Parametern ab: vom Rauschen im Signal, vom Ziel beziehungsweise der Aufgabe, zum Beispiel ob das Signal zur Vorhersage der Zukunft verwendet wird, und von der Komplexität des zu codierenden Signals. Die oben beschriebenen Theorien gelten nur für bestimmte Wertebereiche dieser Parameter und decken nicht den gesamten möglichen Parameterraum ab. Das führt zu Problemen beim Versuch, sie experimentell zu testen.

Gašper Tkačik erklärt: "Wenn Sie Stimuli entwerfen, die sie dann den Neuronen präsentieren um das Modell zu testen, ist es extrem schwierig zu unterscheiden, ob ein Neuron nicht vollständig mit Ihrer Lieblingstheorie übereinstimmt oder ob Ihre Lieblingstheorie einfach unvollständig ist. Unser einheitlicher Rahmen kann nun konkrete Vorhersagen für Parameterwerte geben, die zwischen denen der zuvor untersuchten Fälle liegen."

Die vereinheitlichte Theorie des Teams überwindet frühere Einschränkungen, indem sie den Neuronen erlaubt, "gemischte" Kodierungsziele zu haben. Sie müssen also nicht in eine klare, zuvor untersuchte Kategorie fallen. Zum Beispiel kann die neue Theorie den Fall abdecken, in dem Neuronen einzeln ein sehr hohen Rauschen haben, aber dennoch spärliche Stimuli effizient codieren sollten. Allgemeiner ausgedrückt können optimale neuronale Codes auf einem Kontinuum entsprechend den Parameterwerten platziert werden, die Optimalitätsbeschränkungen definieren.

Das erklärt Phänomene, die zuvor beobachtet wurden, aber durch keines der existierenden Modelle erklärt werden konnten. Für den Erstautor Matthew Chalk ist dies einer der spannendsten Beiträge ihrer Arbeit: "Viele der Theorien, die Vorhersagen erlauben, sind im Test unflexibel: Entweder haben sie das richtige Ergebnis vorhergesagt oder nicht. Wovon wir mehr brauchen und was unsere Studie bietet, sind Rahmenwerke die in der Lage sind, Hypothesen für eine Vielzahl von Situationen und Annahmen zu erzeugen."

Abgesehen davon, dass es die Theorie mit größerer Flexibilität ausstattet, macht das Rahmenwerk der Forscher konkrete Vorhersagen für Arten von neuronaler Kodierung, die bisher unerforscht waren, zum Beispiel für Kodierung, die sowohl spärlich als auch vorhersagend ist. Als Nachfolgeprojekt zu ihrer neuen theorie, entwirft Matthew Chalk Experimente, um diese Vorhersagen zu überprüfen und um Neuronen als effizient, vorhersagend, spärlich oder als eine Kombination dieser Kodierungsziele zu kategorisieren. In Olivier Marres Labor am Institut de la Vision in Paris konzentriert er sich auf die Netzhaut und entwickelt visuelle Stimuli, die die Netzhautneuronen aktivieren, um ihre Kodierungsziele am besten zu enthüllen.

Zudem kann das Rahmenwerk auch breiter angewendet werden: "Man muss nicht unbedingt nur an Neuronen denken", fügt Gašper Tkačik hinzu. "Die Idee, dieses Problem unter dem Gesichtspunkt der Optimierung zu betrachten, kann bei jeder Art von Systemen verwendet werden, die Signale verarbeiten. Und die Approximation erlaubt uns, auch solche Systeme zu studieren deren Funktionen normalerweise mit Berechnungen schwer zu bewältigen sind." Den Grundstein für diese weiteren Anwendungen legten die drei Wissenschaftler bereits in einem früherer Artikel, der in Advances in Neural Information Processing Systems (NIPS) publiziert wurde.

IST Austria

Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Quellen:
• Matthew Chalk, Olivier Marre, and Gašper Tkačik: “Towards a unified theory of efficient, predictive and sparse coding”, PNAS 2017
• Previous paper in NIPS: Matthew Chalk, Olivier Marre, and Gašper Tkačik: “Relevant sparse codes with variational information bottleneck”, NIPS 2016
https://papers.nips.cc/paper/6101-relevant-sparse-codes-with-variational-informa...

Weitere Informationen:

http://www.pnas.org/content/early/2017/12/18/1711114115.abstract Link zum PNAS-Artikel
http://ist.ac.at/nc/de/news-media/news/news-detail/article/unifying-the-theories... Link zur Pressemitteilung auf der Seite des IST Austria
https://gtkacik.pages.ist.ac.at/ Link zur Webseite von Prof. Gašper Tkačik

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics