Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Bonn wandeln Haut- und Nabelschnurzellen direkt in Nervenzellen um

10.04.2012
Bis vor Kurzem galt die Gewinnung von pluripotenten „Alleskönner“-Stammzellen aus Hautzellen als ultimative Neuentwicklung.

Mittlerweile ist es möglich geworden, Körperzellen direkt ineinander umzuwandeln – ohne den zeitaufwändigen Umweg über ein pluripotentes Zwischenstadium. Allerdings war diese Methode bislang wenig effizient.


Nervenzellen, die direkt aus Hautzellen hergestellt wurden: Sie sind mit einem Antikörper gegen das neuronale Protein ßIII-Tubulin (grün) gefärbt. Der Zellkern erscheint durch die Färbung blau. Foto: Julia Ladewig/Uni Bonn


Nervenzellen, die direkt aus Hautzellen gewonnen wurden: Sie sind mit Antikörpern gegen die neuronalen Proteine ßIII-Tubulin (grün) und MAP2 (rot) gefärbt. Foto: Julia Ladewig/Uni Bonn

Nun haben Wissenschaftler vom Bonner Institut für Rekonstruktive Neurobiologie (Direktor: Prof. Dr. Oliver Brüstle) das Verfahren so weit entwickelt, dass die Methode für biomedizinische Anwendungen eingesetzt werden kann. Die Wissenschaftler stellen ihre Ergebnisse in der Fachzeitschrift „Nature Methods“ vor.

Mit dem Durchbruch von Shinya Yamanaka stieß die Zellreprogrammierung auf große Begeisterung. Im Jahr 2006 war dem japanischen Wissenschaftler erstmals gelungen, Hautzellen mit Hilfe weniger Steuerungsfaktoren in so genannte induziert pluripotente Stammzellen (iPS-Zellen) umzuprogrammieren – „Alleskönner“, aus denen sich im Prinzip alle Körperzellen herstellen lassen. Im Jahr 2010 spann Marius Wernig, ehemaliger Postdoktorand von Prof. Brüstle und zwischenzeitlich selbst Institutsleiter an der Stanford University in Kalifornien, die Idee weiter: Mit Hilfe von nur drei so genannten Transkriptionsfaktoren gelang seinem Team die direkte Umwandlung von Hautzellen in so genannte induzierte Neurone (iN). Allerdings war die Methode bislang wenig effizient: Nur wenige Prozent der Hautzellen verwandelten sich in die begehrten Nervenzellen.

Forscher steigern die Ausbeute bei der Umwandlung der Zellen

Für die Wissenschaftler am LIFE & BRAIN-Zentrum der Universität Bonn war das zu wenig. Sie interessieren sich für die biomedizinische Nutzung von künstlich hergestellten menschlichen Nervenzellen für Krankheitsforschung, Zellersatz und Wirkstoffentwicklung. Da lag ein Gedanke nahe: Warum nicht niedermolekulare Wirkstoffe - so genannte small molecules - einsetzen, um den Prozess zu optimieren? Julia Ladewig, Postdoktorandin und Erstautorin der Studie, machte sich daran, mit solchen Wirkstoffen gleich mehrere für die Zellentwicklung wichtigen Signalwege zu beeinflussen.

Durch Blockade des so genannten SMAD-Signalwegs und eine Hemmung der Glykogen Synthase Kinase 3 beta (GSK3ß) steigerten sie die Umwandlungseffizienz auf ein Vielfaches – und konnten dabei den Weg der Gewinnung sogar vereinfachen. Mit Hilfe von nur zwei statt zuvor drei Transkriptionsfaktoren und drei Wirkstoffen gelang es den Bonner Forschern, den Großteil der Hautzellen in Neurone umzuwandeln. Am Ende enthielten ihre Zellkulturen bis zu mehr als 80 Prozent menschliche Neurone. Und da sich die Zellen während des Umwandlungsprozesses noch weiter teilen, liegt die tatsächliche Effizienz sogar noch höher.

Aus einer Hautzelle entstehen zwei Nervenzellen

„Umgerechnet können wir aus 100.000 Hautzellen auf diese Weise bis zu mehr als 200.000 Nervenzellen gewinnen“, so Julia Ladewig. Um die richtige Kombination von Wirkstoffen herauszufinden, orientierten sich die Bonner an Signalwegen, die für die Zellspezialisierung besonders wichtig sind. „Sowohl der SMAD-Signalweg als auch GSK3ß standen im Verdacht, die Umwandlung von Bindegewebszellen und pluripotenten Stammzellen in neurale Zellen zu hemmen. Da lag es nahe, beide mit Hilfe entsprechender Wirkstoffe zu blockieren“, sagt Philipp Koch, Teamleiter und gemeinsam mit Prof. Brüstle verantwortlicher Letztautor der Studie. Mit faszinierenden Ergebnissen: „Wir konnten zeigen, wie während der Zellumwandlung nach und nach die für Hautfibroblasten typischen Gene herunterreguliert und nervenzell-spezifische Gene hochgefahren wurden. Zudem waren die so gewonnenen Nervenzellen funktionell aktiv, was sie auch als Quelle für den Zellersatz interessant macht“, so Ladewig.

Wissenschaftler übertragen das Verfahren jetzt auf andere Zelltypen

Die Bonner haben das Verfahren bereits auf andere Zelltypen wie zum Beispiel Nabelschnurzellen übertragen. Brüstle sieht die nächsten Schritte klar voraus: „Als Erstes wollen wir so gewonnene Nervenzellen für die Krankheits- und Wirkstoffforschung einsetzen. Langfristiges Ziel wird es sein, Zellen direkt im Körper in Nervenzellen umzuwandeln.“

Publikation: Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., Herms, S., Wernet, P., Kögler, G., Müller, F.-J., Koch, P., Brüstle, O. (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods (DOI: 10.1038/nmeth.1972)

Kontakt:

Dr. Philipp Koch & Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologie
LIFE & BRAIN Center
Universität Bonn
Telefon: +49-228-6885-500
E-Mail: r.neuro@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops