Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Bonn wandeln Haut- und Nabelschnurzellen direkt in Nervenzellen um

10.04.2012
Bis vor Kurzem galt die Gewinnung von pluripotenten „Alleskönner“-Stammzellen aus Hautzellen als ultimative Neuentwicklung.

Mittlerweile ist es möglich geworden, Körperzellen direkt ineinander umzuwandeln – ohne den zeitaufwändigen Umweg über ein pluripotentes Zwischenstadium. Allerdings war diese Methode bislang wenig effizient.


Nervenzellen, die direkt aus Hautzellen hergestellt wurden: Sie sind mit einem Antikörper gegen das neuronale Protein ßIII-Tubulin (grün) gefärbt. Der Zellkern erscheint durch die Färbung blau. Foto: Julia Ladewig/Uni Bonn


Nervenzellen, die direkt aus Hautzellen gewonnen wurden: Sie sind mit Antikörpern gegen die neuronalen Proteine ßIII-Tubulin (grün) und MAP2 (rot) gefärbt. Foto: Julia Ladewig/Uni Bonn

Nun haben Wissenschaftler vom Bonner Institut für Rekonstruktive Neurobiologie (Direktor: Prof. Dr. Oliver Brüstle) das Verfahren so weit entwickelt, dass die Methode für biomedizinische Anwendungen eingesetzt werden kann. Die Wissenschaftler stellen ihre Ergebnisse in der Fachzeitschrift „Nature Methods“ vor.

Mit dem Durchbruch von Shinya Yamanaka stieß die Zellreprogrammierung auf große Begeisterung. Im Jahr 2006 war dem japanischen Wissenschaftler erstmals gelungen, Hautzellen mit Hilfe weniger Steuerungsfaktoren in so genannte induziert pluripotente Stammzellen (iPS-Zellen) umzuprogrammieren – „Alleskönner“, aus denen sich im Prinzip alle Körperzellen herstellen lassen. Im Jahr 2010 spann Marius Wernig, ehemaliger Postdoktorand von Prof. Brüstle und zwischenzeitlich selbst Institutsleiter an der Stanford University in Kalifornien, die Idee weiter: Mit Hilfe von nur drei so genannten Transkriptionsfaktoren gelang seinem Team die direkte Umwandlung von Hautzellen in so genannte induzierte Neurone (iN). Allerdings war die Methode bislang wenig effizient: Nur wenige Prozent der Hautzellen verwandelten sich in die begehrten Nervenzellen.

Forscher steigern die Ausbeute bei der Umwandlung der Zellen

Für die Wissenschaftler am LIFE & BRAIN-Zentrum der Universität Bonn war das zu wenig. Sie interessieren sich für die biomedizinische Nutzung von künstlich hergestellten menschlichen Nervenzellen für Krankheitsforschung, Zellersatz und Wirkstoffentwicklung. Da lag ein Gedanke nahe: Warum nicht niedermolekulare Wirkstoffe - so genannte small molecules - einsetzen, um den Prozess zu optimieren? Julia Ladewig, Postdoktorandin und Erstautorin der Studie, machte sich daran, mit solchen Wirkstoffen gleich mehrere für die Zellentwicklung wichtigen Signalwege zu beeinflussen.

Durch Blockade des so genannten SMAD-Signalwegs und eine Hemmung der Glykogen Synthase Kinase 3 beta (GSK3ß) steigerten sie die Umwandlungseffizienz auf ein Vielfaches – und konnten dabei den Weg der Gewinnung sogar vereinfachen. Mit Hilfe von nur zwei statt zuvor drei Transkriptionsfaktoren und drei Wirkstoffen gelang es den Bonner Forschern, den Großteil der Hautzellen in Neurone umzuwandeln. Am Ende enthielten ihre Zellkulturen bis zu mehr als 80 Prozent menschliche Neurone. Und da sich die Zellen während des Umwandlungsprozesses noch weiter teilen, liegt die tatsächliche Effizienz sogar noch höher.

Aus einer Hautzelle entstehen zwei Nervenzellen

„Umgerechnet können wir aus 100.000 Hautzellen auf diese Weise bis zu mehr als 200.000 Nervenzellen gewinnen“, so Julia Ladewig. Um die richtige Kombination von Wirkstoffen herauszufinden, orientierten sich die Bonner an Signalwegen, die für die Zellspezialisierung besonders wichtig sind. „Sowohl der SMAD-Signalweg als auch GSK3ß standen im Verdacht, die Umwandlung von Bindegewebszellen und pluripotenten Stammzellen in neurale Zellen zu hemmen. Da lag es nahe, beide mit Hilfe entsprechender Wirkstoffe zu blockieren“, sagt Philipp Koch, Teamleiter und gemeinsam mit Prof. Brüstle verantwortlicher Letztautor der Studie. Mit faszinierenden Ergebnissen: „Wir konnten zeigen, wie während der Zellumwandlung nach und nach die für Hautfibroblasten typischen Gene herunterreguliert und nervenzell-spezifische Gene hochgefahren wurden. Zudem waren die so gewonnenen Nervenzellen funktionell aktiv, was sie auch als Quelle für den Zellersatz interessant macht“, so Ladewig.

Wissenschaftler übertragen das Verfahren jetzt auf andere Zelltypen

Die Bonner haben das Verfahren bereits auf andere Zelltypen wie zum Beispiel Nabelschnurzellen übertragen. Brüstle sieht die nächsten Schritte klar voraus: „Als Erstes wollen wir so gewonnene Nervenzellen für die Krankheits- und Wirkstoffforschung einsetzen. Langfristiges Ziel wird es sein, Zellen direkt im Körper in Nervenzellen umzuwandeln.“

Publikation: Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., Herms, S., Wernet, P., Kögler, G., Müller, F.-J., Koch, P., Brüstle, O. (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods (DOI: 10.1038/nmeth.1972)

Kontakt:

Dr. Philipp Koch & Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologie
LIFE & BRAIN Center
Universität Bonn
Telefon: +49-228-6885-500
E-Mail: r.neuro@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten