Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher sehen lebenden Zellen bei der Teilung zu

26.09.2012
Unter Federführung der Universität Bonn haben Wissenschaftler ein Verfahren entwickelt, das es erlaubt, lebenden Zellen bei der Zellteilung zuzusehen.
Damit ist nun ein neues Werkzeug vorhanden, mit dem das Potenzial regenerativer Prozesse besser beurteilt werden kann. So lassen sich nach einem Herzinfarkt intakt gebliebene Zellen nicht so einfach vervielfältigen wie gedacht. Die Forscher stellen ihre Ergebnisse in der aktuellen Ausgabe des renommierten Fachjournals „Nature Communications“ vor.

Wenn durch Durchblutungsstörungen Teile des Herzmuskels absterben, wird es gefährlich. Der Herzinfarkt zählt zu den Haupttodesursachen in den Industrienationen. Mehr als 50.000 Menschen sterben jährlich in Deutschland an einer solchen akuten Herzattacke. „Aber selbst wenn die Betroffenen überleben, kann es zu erheblichen Beeinträchtigungen der Herzfunktion“ kommen, berichtet Prof. Dr. Bernd K. Fleischmann vom Institut für Physiologie I am Life & Brain Zentrum der Universität Bonn. Die abgestorbenen Herzmuskelzellen werden nämlich nicht durch neue Herzmuskelzellen, sondern durch Narbengewebe ersetzt, das keine Pumpleistung erbringt.

Regenerationspotenzial ist nicht vorhanden

Ein weltweit verfolgter therapeutischer Ansatz zielt darauf ab, die verbliebenen intakten Herzmuskelzellen mit speziellen Wirkstoffen zur Teilung anzuregen und damit die Herzleistung wieder zu steigern. „Es gibt hierzu in der wissenschaftlichen Literatur teilweise euphorische Berichte, die bisher nicht verifiziert werden konnten“, sagt Erstautor Dr. Michael Hesse, wissenschaftlicher Mitarbeiter am Institut für Physiologie I. „Diese Befunde können wir nun mit unserer neuen Methode genauestens untersuchen. Unsere Ergebnisse zeigen, dass im erwachsenen Herzen ohne Behandlung im Grunde kein Regenerationspotenzial von Herzmuskelzellen vorhanden ist.“ Die Forscher haben eine neuartige Methode entwickelt, mit der sich die Teilung lebender Zellen „live“ beobachten lässt. Sie untersuchten damit gentechnisch veränderte Mäuse, die einen Herzinfarkt erlitten hatten.

Herzzellen mit zwei Zellkernen sind nicht teilungsfähig

Das Ergebnis: „Die Herzmuskelzellen teilten sich nicht richtig, sondern verdoppelten lediglich ihre Zellkerne oder einen Teil ihres Erbguts“, berichtet Alexandra Raulf, die sich mit ihrem Institutskollegen Dr. Hesse die Erstautorenschaft teilt. „Das hat zur Folge, dass auf diese Weise keine neuen Herzzellen nach dem Infarkt entstehen.“ Bei einer echten Teilung verdoppeln sich zwar auch die Zellkerne, sie werden aber anschließend auf zwei Zellen verteilt, indem sich die Mutterzelle in der Mitte abschnürt. Diese verschiedenen Teilungsarten ließen sich bislang nicht so einfach voneinander unterscheiden. „Insbesondere wenn man neue Therapiestrategien entwickelt, benötigt man auch geeignete Prüfverfahren“, sagt Dr. Hesse. „Für die Zellteilung haben wir nun eines vorgelegt.“

Forscher nutzen fluoreszierenden Farbstoff aus einer Qualle

Die Wissenschaftler nutzten für ihre neuartige Methode Anillin, ein Eiweißmolekül des Zellteilungsapparats und den Farbstoff „grün fluoreszierendes Protein“ (GFP) aus einer Qualle, das unter blauem Licht grün leuchtet. Sie kombinierten das Anillin-Gen und das Gen für diesen Fluoreszenzfarbstoff, brachten es in embryonale Stammzellen ein und erzeugten daraus auch gentechnisch veränderte Mäuse. „Während der Zellteilung markiert das GFP-Anillin genau die entscheidenden Prozesse“, berichtet Dr. Hesse. Nach der Zellteilung wird das Anillin wieder abgebaut und der leuchtende Farbstoff verschwindet. „Wir konnten deshalb unter dem Mikroskop `live´ die einzelnen Schritte der Zellteilung verfolgen – und auch, ob sie vollständig abliefen.“

Schnelles und kostengünstiges Testverfahren mit viel Potenzial

Die Forscher haben damit außerdem erstmals ein schnelles und kostengünstiges Testverfahren für die einzelnen Phasen der Zellteilung etabliert, das sich in Zukunft auch vollautomatisch durchführen lässt. Zusammen mit anderen Forscherteams testeten die Wissenschaftler die Anwendbarkeit des Systems an verschiedenen Zelltypen, darunter auch Nervenzellen, Leberzellen und embryonale Stammzellen. Beteiligt waren die Abteilungen für Herzchirurgie und für Innere Medizin I sowie die Institute für Zelluläre Neurowissenschaften und Pharmakologie der Universität Bonn sowie Wissenschaftler des Max-Planck-Instituts für Molekulare Biomedizin in Münster, das Institut für Stammzellforschung in Neuherberg/München und die Cornell University Ithaca (USA). „Die von uns entwickelte Technologie erlaubt es nun, neue Prüfverfahren für Forschungs- und Therapieansätze zur Zellteilung ein großes Stück voranzubringen“, sagt Dr. Hesse.

Publikation: Direct visualization of cell division using high resolution imaging of M-phase of the cell cycle, „Nature Communications“, DOI: 10.1038/ncomms2089

Kontakt:

Prof. Dr. med. Bernd K. Fleischmann
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel. 0228/6885200
E-Mail: bernd.fleischmann@uni-bonn.de

Dr. Michael Hesse
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel.: 0228/6885233
E-Mail: mhesse1@uni-bonn.de

Alexandra Raulf
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel.: 0228/6885223
E-Mail: araulf@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie