Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher sehen lebenden Zellen bei der Teilung zu

26.09.2012
Unter Federführung der Universität Bonn haben Wissenschaftler ein Verfahren entwickelt, das es erlaubt, lebenden Zellen bei der Zellteilung zuzusehen.
Damit ist nun ein neues Werkzeug vorhanden, mit dem das Potenzial regenerativer Prozesse besser beurteilt werden kann. So lassen sich nach einem Herzinfarkt intakt gebliebene Zellen nicht so einfach vervielfältigen wie gedacht. Die Forscher stellen ihre Ergebnisse in der aktuellen Ausgabe des renommierten Fachjournals „Nature Communications“ vor.

Wenn durch Durchblutungsstörungen Teile des Herzmuskels absterben, wird es gefährlich. Der Herzinfarkt zählt zu den Haupttodesursachen in den Industrienationen. Mehr als 50.000 Menschen sterben jährlich in Deutschland an einer solchen akuten Herzattacke. „Aber selbst wenn die Betroffenen überleben, kann es zu erheblichen Beeinträchtigungen der Herzfunktion“ kommen, berichtet Prof. Dr. Bernd K. Fleischmann vom Institut für Physiologie I am Life & Brain Zentrum der Universität Bonn. Die abgestorbenen Herzmuskelzellen werden nämlich nicht durch neue Herzmuskelzellen, sondern durch Narbengewebe ersetzt, das keine Pumpleistung erbringt.

Regenerationspotenzial ist nicht vorhanden

Ein weltweit verfolgter therapeutischer Ansatz zielt darauf ab, die verbliebenen intakten Herzmuskelzellen mit speziellen Wirkstoffen zur Teilung anzuregen und damit die Herzleistung wieder zu steigern. „Es gibt hierzu in der wissenschaftlichen Literatur teilweise euphorische Berichte, die bisher nicht verifiziert werden konnten“, sagt Erstautor Dr. Michael Hesse, wissenschaftlicher Mitarbeiter am Institut für Physiologie I. „Diese Befunde können wir nun mit unserer neuen Methode genauestens untersuchen. Unsere Ergebnisse zeigen, dass im erwachsenen Herzen ohne Behandlung im Grunde kein Regenerationspotenzial von Herzmuskelzellen vorhanden ist.“ Die Forscher haben eine neuartige Methode entwickelt, mit der sich die Teilung lebender Zellen „live“ beobachten lässt. Sie untersuchten damit gentechnisch veränderte Mäuse, die einen Herzinfarkt erlitten hatten.

Herzzellen mit zwei Zellkernen sind nicht teilungsfähig

Das Ergebnis: „Die Herzmuskelzellen teilten sich nicht richtig, sondern verdoppelten lediglich ihre Zellkerne oder einen Teil ihres Erbguts“, berichtet Alexandra Raulf, die sich mit ihrem Institutskollegen Dr. Hesse die Erstautorenschaft teilt. „Das hat zur Folge, dass auf diese Weise keine neuen Herzzellen nach dem Infarkt entstehen.“ Bei einer echten Teilung verdoppeln sich zwar auch die Zellkerne, sie werden aber anschließend auf zwei Zellen verteilt, indem sich die Mutterzelle in der Mitte abschnürt. Diese verschiedenen Teilungsarten ließen sich bislang nicht so einfach voneinander unterscheiden. „Insbesondere wenn man neue Therapiestrategien entwickelt, benötigt man auch geeignete Prüfverfahren“, sagt Dr. Hesse. „Für die Zellteilung haben wir nun eines vorgelegt.“

Forscher nutzen fluoreszierenden Farbstoff aus einer Qualle

Die Wissenschaftler nutzten für ihre neuartige Methode Anillin, ein Eiweißmolekül des Zellteilungsapparats und den Farbstoff „grün fluoreszierendes Protein“ (GFP) aus einer Qualle, das unter blauem Licht grün leuchtet. Sie kombinierten das Anillin-Gen und das Gen für diesen Fluoreszenzfarbstoff, brachten es in embryonale Stammzellen ein und erzeugten daraus auch gentechnisch veränderte Mäuse. „Während der Zellteilung markiert das GFP-Anillin genau die entscheidenden Prozesse“, berichtet Dr. Hesse. Nach der Zellteilung wird das Anillin wieder abgebaut und der leuchtende Farbstoff verschwindet. „Wir konnten deshalb unter dem Mikroskop `live´ die einzelnen Schritte der Zellteilung verfolgen – und auch, ob sie vollständig abliefen.“

Schnelles und kostengünstiges Testverfahren mit viel Potenzial

Die Forscher haben damit außerdem erstmals ein schnelles und kostengünstiges Testverfahren für die einzelnen Phasen der Zellteilung etabliert, das sich in Zukunft auch vollautomatisch durchführen lässt. Zusammen mit anderen Forscherteams testeten die Wissenschaftler die Anwendbarkeit des Systems an verschiedenen Zelltypen, darunter auch Nervenzellen, Leberzellen und embryonale Stammzellen. Beteiligt waren die Abteilungen für Herzchirurgie und für Innere Medizin I sowie die Institute für Zelluläre Neurowissenschaften und Pharmakologie der Universität Bonn sowie Wissenschaftler des Max-Planck-Instituts für Molekulare Biomedizin in Münster, das Institut für Stammzellforschung in Neuherberg/München und die Cornell University Ithaca (USA). „Die von uns entwickelte Technologie erlaubt es nun, neue Prüfverfahren für Forschungs- und Therapieansätze zur Zellteilung ein großes Stück voranzubringen“, sagt Dr. Hesse.

Publikation: Direct visualization of cell division using high resolution imaging of M-phase of the cell cycle, „Nature Communications“, DOI: 10.1038/ncomms2089

Kontakt:

Prof. Dr. med. Bernd K. Fleischmann
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel. 0228/6885200
E-Mail: bernd.fleischmann@uni-bonn.de

Dr. Michael Hesse
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel.: 0228/6885233
E-Mail: mhesse1@uni-bonn.de

Alexandra Raulf
Institute of Physiology I
Life & Brain Center der Universität Bonn
Tel.: 0228/6885223
E-Mail: araulf@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften