Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016

Wissenschaftlern der Universität Bonn ist es gelungen, einem wichtigen Zellprotein bei der Arbeit zuzusehen. Sie nutzten dazu eine Methode, mit der man Strukturänderungen komplexer Moleküle messen kann. Das weiter entwickelte Verfahren erlaubt es, derartige Prozesse in der Zelle zu beobachten, also der natürlichen Umgebung. Die Forscher stellen zudem eine Art Werkzeugkasten zur Verfügung, der die Vermessung unterschiedlichster Moleküle erlaubt. Ihre Studie ist jetzt in der Zeitschrift „Angewandte Chemie International Edition“ erschienen.

Wenn wir eine vorweihnachtliche Walnuss öffnen wollen, benutzen wir dazu in der Regel einen Nussknacker. Der besteht im einfachsten Fall aus zwei Schenkeln, die sich um ein Gelenk gegeneinander bewegen und so Druck auf die Schale ausüben können. Ganz simpel, eigentlich – um zu begreifen, wie so ein Nussknacker funktioniert, genügt es uns, ihn ein einziges Mal in Aktion zu sehen.


Ein Cytochrom-Molekül wurde mit einem magnetischen Etikett versehen (farbige Struktur rechts oben). Zusammen mit einem Bestandteil des Cytochroms (rot) konnte dann der Abstand bestimmt werden.

© AG Schiemann/Uni Bonn

Die Funktionsweise von Zellmolekülen zu verstehen, ist dagegen deutlich schwieriger. Dabei ändern auch diese bei ihrer Arbeit oft ihre räumliche Struktur – ähnlich wie der Nussknacker, bei dem die Schenkel auf- oder zuklappen.

Diese Konformationsänderungen verraten Eingeweihten sehr viel über die Art und Weise, wie das Molekül seine Aufgabe erfüllt. Leider ist es jedoch sehr schwierig, derartige Bewegungen zu messen, weil sie auf einer sehr kleinen Längenskala erfolgen. Dies gilt umso mehr, wenn man die Strukturänderungen in der natürlichen Zellumgebung untersuchen will.

Der Arbeitsgruppe vom Institut für Physikalische und Theoretische Chemie der Universität Bonn ist dies nun gelungen. Die Wissenschaftler entwickelten dazu eine Methode weiter, die schon seit vielen Jahren zur Vermessung großer Moleküle eingesetzt wird. „Diese funktioniert normalerweise aber nur im Reagenzglas“, erklärt der Leiter der Studie Prof. Dr. Olav Schiemann. „Unser Verfahren lässt sich dagegen auch in Zellen einsetzen.“

Die Forscher nutzten für ihre Messungen die so genannte Elektronen Paramagnetische Resonanz-Spektroskopie. Dabei wird üblicherweise das zu vermessende Molekül an zwei verschiedenen Stellen mit einer magnetischen Markierung versehen. Durch Bestrahlung mit Mikrowellen wird dann einer dieser Minimagnete umgepolt. Dadurch ändert sich das Magnetfeld, das von ihm ausgeht, was wiederum den zweiten Magneten beeinflusst. Diese Beeinflussung ist umso größer, je näher beide Markierungen einander sind.

„Wir messen nun, wie stark der zweite Magnet auf die Umpolung des ersten reagiert“, erläutert Schiemann. „Daraus können wir auf die Entfernung der beiden Markierungen schließen.“ Wenn man nun – bildlich gesprochen – die beiden Schenkel des Nussknackers auf diese Weise markiert, lässt sich ihre Bewegung gegeneinander nachvollziehen.

Magnetische Maßbänder

Das Verfahren ist im Prinzip nicht neu. „Uns ist es jedoch gelungen, eine neue Art von Labeln herzustellen, mit der wir verschiedenste Biomoleküle ortsspezifisch markieren können", erklärt Schiemanns Mitarbeiter Jean Jacques Jassoy. Üblicherweise bestehen diese Label aus Radikalen – das sind chemische Verbindungen, die ein einzelnes freies Elektron tragen. Dieses fungiert bei der Messung als Magnet. Das Problem dabei: Einzelne Elektronen sind sehr reaktiv – sie versuchen, sich schnellstmöglich zu Elektronenpaaren zusammenzuschließen. Die Chemiker der Universität Bonn haben in ihrer Arbeit daher ein sehr stabiles Radikal verwandt – eine so genannte Tritylgruppe. Von diesem Trityl-Radikal stellten sie verschiedene Varianten her. Jedes dieser magnetischen Maßbänder eignet sich jeweils für eine bestimmte Molekülgruppe besonders gut.

In ihrer Studie untersuchten die Forscher damit ein Protein aus der Gruppe der P450-Cytochrome. Diese kommen in nahezu allen Lebewesen vor und erfüllen beispielsweise bei Oxidationsvorgängen in der Zelle wichtige Aufgaben. „Wir konnten mit unserer Methode den Abstand zwischen zwei Bereichen des Cytochroms auf Bruchteile eines Millionstel Millimeters genau vermessen“, betont Andreas Berndhäuser vom Institut für Physikalische und Theoretische Chemie.

Das Verfahren eignet sich einerseits dazu, um Konformationsänderungen von Biomolekülen in der Zelle sichtbar zu machen. Gleichzeitig erleichtert es auch generell die Aufklärung von Molekül-Strukturen. Schiemann: „Wir stellen Forschern damit einen neuen Werkzeugkasten zur Verfügung, der zur Beantwortung vieler biochemischer Fragen beitragen könnte.“

Publikation: J. Jacques Jassoy, Andreas Berndhäuser, Fraser Duthie, Sebastian P. Kühn, Gregor Hagelueken, Olav Schiemann: Versatile Trityl Spin Labels for Nanometer Distance Measurements on Biomolecules in vitro and within cells; Angewandte Chemie International Edition; DOI: 10.1002/anie.201609085

Kontakt:

Prof. Dr. Olav Schiemann
Institut für Physikalische und Theoretische Chemie
Universität Bonn
Tel. 0228/732989
E-Mail: schiemann@pc.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics