Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

16.08.2017

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse überwinden, die der Körper zu seinem Schutz gegen Viren, Bakterien oder Partikel wie Dieselruß aufgebaut hat – etwa den Schleim der Atemwege.


Die zylinderförmigen Wirkstoff-Transporter sehen mit ihrer noppigen Struktur aus wie Mais. Doktoranden von Marc Schneider färbten die Rasterelektronenmikroskop-Aufnahme entsprechend ein.

Foto: Marc Schneider/NanoBioNet


Prof. Dr. Marc Schneider

Foto: Ehrlich

Damit die Arznei dort nicht steckenbleibt, haben Professor Marc Schneider und sein Team ein Transportsystem entwickelt, das einen Wirkstoff zuverlässig in die Lungenzellen schleust. „Stäbchenförmige Partikel sind lungengängig, werden also in die Lunge aufgenommen. Außerdem bieten sie ein großes Volumen für die Ladung, die transportiert werden soll. Daher wollten wir ein Transportsystem mit dieser Form entwickeln“, erklärt der Professor für Biopharmazie und Pharmazeutische Technologie an der Saar-Universität.

Die Zylinder mit der maisartigen Struktur sind 10.000 x 3.000 Nanometer klein, etwa so groß wie ein Bakterium. Damit stehen sie auch auf dem Speisezettel der Fresszellen des Immunsystems. „Sie sind von ihrer Größe her so bemessen, dass sie beim Inhalieren im tiefen Lungengewebe landen. Zudem stellen wir über die Größe sicher, dass nur die Immunzellen, vor allem die Makrophagen, den Transporter aufnehmen“, erläutert Schneider.

Die Fresszellen fressen den „Nano-Mais“. Durch ihre Verdauungsprozesse setzen sie den in ihm transportierten Wirkstoff frei: Konkret besteht dieser Wirkstoff aus genetischem Material, das die Funktion der Makrophagen beeinflusst. Die in dieser so genannten Plasmid-DNA enthaltenen „Befehle“ programmieren die Immunzellen so um, dass sie einen erwünschten Therapieeffekt auslösen und zur Heilung beitragen können. Der „Nano-Mais“ sorgt dafür, dass diese Ladung zielgenau im richtigen Zelltyp abgeliefert wird.

Mehrere Jahre arbeiteten die Forscher und ihre Partner daran, die kleinen Transporter im Mikrometer-Maßstab stabil herstellen und passgenau beladen zu können. Schneider und sein Team füllen hierzu Partikel in eine stäbchenförmige Nano-Schablone mit vielen kleinen Löchern: ganz so als würden sie Teig in eine Kuchenform gießen. Es entsteht ein Nano-Röhrchen mit vielen kleinen Kugeln.

Damit dieses zusammenhält und nicht auseinanderfällt, verkleben die Forscher die Moleküle Lage für Lage miteinander und verbacken dabei zugleich auch die pharmazeutisch aktiven Substanzen. Wenn die Membran-Schablone sich später auflöst, bleibt der fertig beladene maisförmige Transporter.

Um die Ladung mit der Plasmid-DNA optimal für den Transport zu bemessen und anzupassen, arbeiteten Schneider und sein Team mit Forschern des Leibniz-Instituts für Neue Materialien auf dem Saarbrücker Campus zusammen.

Dass die kleinen Trägersysteme tatsächlich ihre Ladung in die Lungenzellen liefern, konnten die Pharmazeuten zusammen mit Biopharmazeuten der Philipps-Universität Marburg um Professor Udo Bakowsky und Zellbiologen der Saar-Universität aus dem Team von Professor Thomas Tschernig zeigen: Hierzu beluden die Wissenschaftler den „Nano-Mais“ mit genetischem Material, das den Bauplan von so genannter „Luciferase“ enthält: Dieses Enzym ruft eine Leuchtreaktion, eine Biolumineszenz, hervor. Nimmt die Zelle den „Nano-Mais“ mit dieser Ladung auf, produziert sie dieses Enzym und leuchtet. Die Wissenschaftler konnten nach erfolgreichem Transport das Leuchten in den Zellen nachweisen.

Noch ist der Wirkstoff-Transporter Gegenstand der Grundlagenforschung. Aber die Forscher um Marc Schneider entwickeln das Material ihres Wirkstoff-Transporters derzeit für den späteren Einsatz in der Therapie weiter. So könnte der Transporter in nicht ferner Zukunft etwa in der Mukoviszidose-Therapie Einsatz finden.

„Aspherical, Nanostructured Microparticles for Targeted Gene Delivery to Alveolar Macrophages“. Michael Möhwald, Shashank Reddy Pinnapireddy, Bodo Wonnenberg, Marcel Pourasghar, Marijas Jurisic, Andrea Jung, Claudia Fink-Straube, Thomas Tschernig, Udo Bakowsky, Marc Schneider. Advanced Healthcare Materials
http://onlinelibrary.wiley.com/doi/10.1002/adhm.201700478/abstract

Pressefotos für den kostenlosen Gebrauch finden Sie unter
http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.
Fototext:
Blick in die Nano-Welt: Gerade mal zehn mal drei Mikrometer messen die zylinderförmigen Wirkstoff-Transporter. Und sie sehen mit ihrer noppigen Struktur aus wie Mais. Doktoranden von Professor Marc Schneider färbten die schwarz-weiße Rasterelektronenmikroskop-Aufnahme gelb und grün ein. Für die Aufnahme waren die Wissenschaftler im bundesweiten Fotowettbewerb "Nano-Momente 2012“ mit dem zweiten Preis ausgezeichnet worden. Die Forscher und ihre Partner haben die kleinen Transporter im Mikrometer-Maßstab so weiterentwickelt, dass sie diese stabil herstellen und passgenau beladen können.
Foto: Marc Schneider/NanoBioNet

Kontakt:
Prof. Dr. Marc Schneider (Institut für Biopharmazie und Pharmazeutische Technologie)
Tel.: 0681 302 2438; E-Mail: Marc.Schneider@mx.uni-saarland.de
http://www.uni-saarland.de/lehrstuhl/schneider.html

Hinweis für Hörfunk-Journalisten: Telefoninterviews in Studioqualität möglich über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-64091 oder -2601).

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adhm.201700478/abstract

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik