Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

16.01.2018

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger bioanorganischer Elektronentransfersysteme im Detail aufgeklärt.


Modelkomplexe für den entatischen Zustand optimieren die Energie der Start- und Endgeometrien, um schnelle Reaktionen zu ermöglichen (illustriert durch die Hügellandschaft).

RWTH Aachen/Sonja Herres-Pawlis

Die Wissenschaftler konnten mit einer Kombination unterschiedlichster, zeitaufgelöster Messmethoden, unter anderem an DESYs Röntgenlichtquelle PETRA III, zeigen, dass sogenannte vorverspannte Zustände photochemische Reaktionen beschleunigen oder überhaupt erst ermöglichen.

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger bioanorganischer Elektronentransfersysteme im Detail aufgeklärt.

Die Wissenschaftler konnten mit einer Kombination unterschiedlichster, zeitaufgelöster Messmethoden, unter anderem an DESYs Röntgenlichtquelle PETRA III, zeigen, dass sogenannte vorverspannte Zustände photochemische Reaktionen beschleunigen oder überhaupt erst ermöglichen.

Die Gruppe um Sonja Herres-Pawlis von der RWTH Aachen, Michael Rübhausen von der Universität Hamburg und Wolfgang Zinth von der Münchner Ludwig-Maximilians-Universität, stellt ihre Arbeit im Fachjournal „Nature Chemistry“ vor.

Die Forscher hatten den vorverspannten, „entatischen“ Zustand an einem Modellsystem untersucht. Als entatischen Zustand bezeichnen Chemiker die Konfiguration eines Moleküls, bei der die normale Anordnung der Atome durch äußere Bindungspartner so verändert wird, dass die Energieschwelle für die gewünschte Reaktion abgesenkt wird und deshalb die Reaktionsgeschwindigkeit zunimmt.

Ein Beispiel ist das Metalloprotein Plastocyanin, das ein Kupferatom im Zentrum besitzt und für wichtige Elektronentransferschritte in der Photosynthese verantwortlich ist. Je nach Oxidationsstufe bevorzugt das Kupferatom eine flache Konfiguration, bei der die umgebenden Atome alle in einer Ebene angeordnet sind (planare Geometrie), oder eine Tetraeder-förmige Anordnung der Nachbarmoleküle.

Durch die Bindungspartner im Protein wird das Kupferatom jedoch in eine Art Zwischenanordnung gezwungen. Durch diesen stark verzerrten Tetraeder wird ein sehr schneller Wechsel zwischen den beiden Oxidationszuständen des Kupferatoms ermöglicht.

„Solche vorverspannten Zustände spielen bei vielen biochemischen Prozessen eine wichtige Rolle“, erläutert Rübhausen, der am Hamburger Center for Free-Elektron Laser Science (CFEL) arbeitet, einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

„Das Prinzip des entatischen Zustands hilft bei Elektronentransferreaktionen, die überall in der Natur und auch im Menschen stattfinden, zum Beispiel wenn wir atmen oder Pflanzen Photosynthese betreiben“, ergänzt Herres-Pawlis.

Bei den biochemisch relevanten vorverspannten Zuständen ist stets ein Metallatom beteiligt. Die Wissenschaftler untersuchten ein Modellsystem aus einem Kupferkomplex und maßgeschneiderten daran gebundenen Molekülen, sogenannten Liganden. Mit Hilfe eines breiten Spektrums von Beobachtungsmethoden sowie mit theoretischen Rechnungen konnten die Forscher zeigen, dass die verwendeten Liganden den Kupferkomplex in der Tat in einen vorverspannten (entatischen) Zustand versetzen, und die Reaktion nach der Lichtabsorption im Detail verfolgen.

Die Kombination von zeitabhängiger UV-, Infrarot-, Röntgen- und visueller Fluoreszenz-Spektroskopie lieferte ein detailliertes Bild der Dynamik der Strukturänderungen auf der Zeitskala von Piko- bis Nanosekunden (billionstel bis milliardstel Sekunden). „Zum ersten Mal können wir verstehen, wie vorverspannte Zustände den Ladungstransfer begünstigen“, erläutert Rübhausen. „Außerdem belegen unsere Untersuchungen, dass vorverspannte Zustände auch für photochemische Reaktionen von Bedeutung sind, also für bestimmte biochemische Prozesse, die durch Licht ausgelöst werden“, erläutert Herres-Pawlis.

Die Untersuchung zeigt im Detail, wie der Prozess abläuft: Aus dem Startzustand (Kupfer in der Oxidationsstufe +1) wird durch die optische Anregung ein Elektron vom Kupfer auf einen Liganden übertragen. Noch in Femtosekunden (billiardstel Sekunden) fällt der entstehende angeregte Zustand in einen immer noch angeregten sogenannten S1-Zustand. Hier entspannt sich in geringem Umfang die Geometrie.

Kurz danach vollführt das Elektron einen Spinwechsel. Der Spin eines Elektrons ist etwas Ähnliches wie die Drehrichtung eines Kreisels. Obwohl das eine Elektron bisher auf dem Liganden verweilte, lagen dieses Elektron und sein entsprechender Partner auf dem Kupfer in einer Spinpaarung vor. Das Elektron auf dem Liganden kehrt nun seinen Spin um.

Durch diesen sehr schnellen Übergang in den sogenannten Triplett-Zustand innerhalb von nur etwa zwei Pikosekunden wird die Spinpaarung aufgehoben. Dieser T1-Zustand existiert 120 Pikosekunden und fällt dann unter erneuter Spinumkehr in den Grundzustand zurück. Alle Zeitkonstanten sind im Vergleich zu anderen Kupferkomplexen ohne Vorverspannung deutlich verkürzt. „Das vollständige Verständnis aller ablaufenden Prozesse wurde erst durch die einzigartige Kombination der Untersuchungsmethoden möglich“, betont Zinth.

Die detaillierte Analyse des Reaktionsprinzips verbessert nicht nur das Verständnis natürlicher Prozesse. Es kann auch helfen, neue, der Natur nachempfundene bioanorganische Komplexe maßzuschneidern, deren Wirkungsspektrum über das der natürlichen hinausgeht. Diese Komplexe könnten chemische Reaktionen, die mit Elektronentransfer einhergehen, auch in anderen Bereichen beschleunigen oder ermöglichen.

An der Untersuchung waren Forscher der Universität Hamburg, der RWTH Aachen, der Ludwig-Maximilians-Universität München, von DESY, der Universität Paderborn, des europäischen Forschungszentrums ELI Beamlines an der Tschechischen Akademie der Wissenschaften, der Universität Uppsala, der Technischen Universität Göteborg, von European XFEL und der Dänischen Technischen Universität beteiligt.

Die Studie wurde durch die Förderung durch die Deutsche Forschungsgemeinschaft im Rahmen der dislozierten Forschergruppe FOR1405 (Dynamics of Electron Transfer Processes within Transition Metal Sites in Biological and Bioinorganic Systems) sowie dem SFB749 (Dynamics and Intermediates of Molecular Transformations) und dem Exzellenzcluster CIPSM ermöglicht.

Originalarbeit:
Transferring the entatic state principle into copper photochemistry; B. Dicke, A. Hoffmann, J. Stanek, M. S. Rampp, B. Grimm-Lebsanft, F. Biebl, D. Rukser, B. Maerz, D. Göries, M. Naumova, M. Biednov, G. Neuber, A. Wetzel, S. M. Hofmann, P. Roedig, A. Meents, J. Bielecki, J. Andreasson, K. Beyerlein, H. N. Chapman, C. Bressler, W. Zinth, M. Rübhausen and S. Herres-Pawlis; „Nature Chemistry“, 2017; DOI: 10.1038/10.1038/nchem.2916

Weitere Informationen:

https://www.desy.de/e409/e116959/index_ger.html?openDirectAnchor=1331&two_co...

Thomas von Salzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics