Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entschlüsseln Grundlagen bislang unheilbarer Leukämie bei Kindern

27.07.2015

Detaillierte molekulare Untersuchungen erlauben neue Einblicke in die Funktion von Tumorzellen und eröffnen neue Therapiemöglichkeiten

Die Akute Lymphoblastische Leukämie (ALL) ist die häufigste Krebsart bei Kindern. Sie kann in verschiedenen Formen auftreten, die sich durch unterschiedliche Veränderungen im Erbmaterial der Krebszellen voneinander unterscheiden.

Einem internationalen Team von Wissenschaftlerinnen und Wissenschaftlern aus Berlin, Düsseldorf, Hannover, Heidelberg, Kiel und Zürich ist es jetzt gelungen, die molekularen Eigenschaften einer bislang als unheilbar geltenden Form dieses Blutkrebses zu entschlüsseln und damit Ansätze für neue Therapiemöglichkeiten zu eröffnen. In der aktuellen Ausgabe der Fachzeitschrift Nature Genetics berichten die Forscher über ihre Ergebnisse.

Die Akute Lymphoblastische Leukämie (ALL) kann in verschiedenen Formen auftreten, die sich durch unterschiedliche Veränderungen im Erbmaterial der Leukämiezellen und in ihrer Reaktion auf verschiedene Therapien voneinander unterscheiden. Dank intensiver Forschung haben sich die Überlebenschancen für Kinder mit ALL in den vergangenen Jahrzehnten deutlich verbessert, leider kann ein Teil jedoch immer noch nicht erfolgreich behandelt werden.

Besonders ungünstig ist eine spezielle, sehr agressive Form der Leukämie, die durch eine t(17;19)-chromosomale Translokation gekennzeichnet ist. Dieser Defekt entsteht durch Bruch und fehlerhafte Neuverknüpfung des Erbmaterials des Tumors und führt zur Bildung eines neuen onkogenen Proteins, das jeweils von Teilen der Gene TCF3 und HLF kodiert wird (TCF3-HLF-positive Leukämiezellen).

Bislang war nicht klar, warum diese spezifische Form der Leukämie im Gegensatz zu anderen ALL-Formen nicht auf Therapieversuche anspricht. Ziel einer internationalen Gruppe von Klinikern und Grundlagenforschern verschiedener Universitäten und Institute unter Beteiligung des Berliner Max-Planck-Instituts für molekulare Genetik (Abteilung Analyse des Vertebratengenoms, Hans Lehrach, Gruppe Marie-Laure Yaspo) war es daher, die molekularen Unterschiede zu identifizieren, die für die fehlende Reaktion des t(17;19)-Subtyps auf Behandlungsversuche verantwortlich sein könnten.

Zu diesem Zweck haben die Wissenschaftler nun nicht nur das Genom dieses bislang unheilbaren Subtyps der ALL entschlüsselt und mit komplexen bioinformatorischen Methoden analysiert, sondern auch das Transkriptom, also diejenigen Bereiche des Erbmaterials, die in den Tumorzellen in RNA übersetzt werden. Sie fanden heraus, dass zusätzlich zu den zwei bereits bekannten fehlerhaft zusammengelagerten Genen noch andere DNA-Bereiche charakteristisch verändert sind. Änderungen wurden aber nicht nur auf der Ebene des Erbmaterials (DNA) des Tumors gefunden.

Die Entschlüsselung der sogenannten Expressionsprofile der Krebszellen (RNAseq), die vor allem von der Berliner Arbeitsgruppe unter Leitung von Marie-Laure Yaspo durchgeführt worden ist, lieferte wichtige neue Erkenntnisse über die Krankheitsmechanismen und Ansatzpunkte für gezielte Therapien. „Die Expressionsprofile zeigen uns die tatsächlich vorhandene Menge an Boten-RNA (mRNA) in den Zellen. Sie sagen uns also, welche Gene in den Leukämiezellen wirklich aktiv und damit am Krankheitsgeschehen beteiligt sind“, erklärt Yaspo.

In den untersuchten Leukämiezellen konnten die Forscher die Aktivität von fehlerhaft exprimierten Genen sowie spezifisch aktivierte Gennetzwerke nachweisen, welche die Entwicklung bestimmter Abwehrzellen des Blutes, der sogenannten B-Lymphozyten, steuern und das Zellwachstum fördern. Das Zusammenspiel der fehlerhaften Fusion von TCF3 und HLF und der Änderungen der Expression bestimmter Gene führt zu einer bislang nicht beobachteten Rückentwicklung der Leukämiezellen auf eine sehr frühe, stammzellartige Entwicklungsstufe. Das Aussehen, d.h., die äußere Erscheinung der Zellen ist dabei allerdings nicht verändert.

“Diese Erkenntnisse wären nicht möglich ohne die Analyse der Genexpression, also der RNA-Botenmoleküle, die in den Tumorzellen gebildet werden. Diese wichtige Technik erlaubt uns nicht nur ein tieferes Verständnis des genetischen Programms, das das Verhalten der Tumorzellen steuert, sondern kann uns auch Informationen über neue Therapiemöglichkeiten liefern”, so Yaspo.

Für weitergehende Untersuchungen haben Forscher unter der Leitung von Jean-Pierre Bourquin am universitären Kinderspital in Zürich Leukämiezellen von erkrankten Kindern in Mäuse transplantiert; Wissenschaftler bezeichnen dies als ein „humanisiertes Mausmodell“. Dieses ermöglicht es, Leukämien wie die ALL unter sehr ähnlichen Bedingungen wie im Menschen zu erforschen. Die Wissenschaftler des Konsortiums konnten nachweisen, dass die in der Maus wachsenden menschlichen Leukämiezellen nicht nur die massgeblichen genetischen Veränderungen, sondern auch das Expressionsprofil des Tumors behalten. Die Zellen verhalten sich also in der Maus sehr ähnlich wie im Menschen. Sie bilden damit eine wirklichkeitsnahe Möglichkeit, neue Therapien patientenorientiert zu prüfen.

Mithilfe der Mausmodelle hat die Züricher Forschungsgruppe fast hundert neuartige Medikamente getestet, von denen einige eine starke Wirkung auf TCF3-HLF-positive Leukämiezellen gezeigt haben. Ein Beispiel dafür ist das Medikament Venetoclax, das sich spezifisch gegen das für den programmierten Zelltod relevante Protein BCL2 richtet und bereits bei anderen Krebsarten Wirkung gezeigt hat. Im Mausmodell führte Venetoclax zu einem deutlichen Rückgang der Erkrankung, gefolgt von langanhaltenden Phasen ohne Krankheitszeichen, wenn es zusammen mit einer herkömmlichen Chemotherapie für Leukämien verabreicht wurde.

Die Ergebnisse diese Studie zeigen das grosse Potential von koordinierten, interdisziplinären Forschungsansätzen unter Einbezug neuester technologischer Möglichkeiten für die Krebsforschung. An dem Projekt waren zu gleichen Teilen Forscherteams unter der Leitung von Jean-Pierre Bourquin, Universitätskinderspital Zürich, Martin Stanulla, Medizinische Hochschule Hannover, Arndt Borkhardt, Heinrich-Heine Universität Düsseldorf, Jan Korbel, Europäisches Molekularbiologisches Laboratorium (EMBL) in Heidelberg, Andre Franke, Christian-Albrechts-Universität Kiel, und Marie-Laure Yaspo, Max-Planck-Institut für molekulare Genetik in Berlin, beteiligt. Gefördert wurde das Verbundprojekt durch das Bundesamt für Strahlenschutz im Rahmen des Umweltforschungsprogramms des Bundesumweltministeriums sowie den Schweizerischen Nationalfonds (SNF).

Originalpublikation

Ute Fischer, Michael Forster, Anna Rinaldi, Thomas Risch, Stéphanie Sungalee, Hans-Jörg Warnatz, Beat Bornhauser, Michael Gombert, Christina Kratsch, Adrian M. Stütz, Marc Sultan, Joelle Tchinda, Catherine LWorth, Vyacheslav Amstislavskiy, Nandini Badarinarayan, André Baruchel, Thies Bartram, Giuseppe Basso, Cengiz Canpolat, Gunnar Cario, Hélène Cavé, Dardane Dakaj, Mauro Delorenzi, Maria Pamela Dobay, Cornelia Eckert, Eva Ellinghaus, Sabrina Eugster, Viktoras Frismantas, Sebastian Ginzel, Oskar Haas, Olaf Heidenreich, Georg Hemmrich-Stanisak, Kebria Hezaveh, Jessica I Höll, Sabine Hornhardt, Peter Husemann, Priyadarshini Kachroo, Christian P Kratz, Geertruy te Kronnie, Blerim Marovca, Felix Niggli, Alice C. McHardy, Anthony V Moorman, Renate Panzer-Grümayer, Britt S. Petersen, Benjamin Raeder, Meryem Ralser, Philip Rosenstiel, Daniel Schäfer, Martin Schrappe, Stefan Schreiber, Moritz Schütte, Björn Stade, Ralf Thiele, Nicolas von der Weid, Ajay Vora, Marketa Zaliova, Langhui Zhang1, Thomas Zichner, Martin Zimmermann, Hans Lehrach, Arndt Borkhardt, Jean-Pierre Bourquin, Andre Franke, Jan O. Korbel, Martin Stanulla & Marie-Laure Yaspo (2015). Genomics and drug profiling of fatal TCF3-HLF−positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options (2015), Nature Genetics, advance online publication 27 July, 2015, doi: 10.1038/ng.3362.

Für Rückfragen zum Berliner Teil der Arbeiten

Dr. Marie-Laure Yaspo
Max-Planck-Institut für molekulare Genetik, Berlin
Phone: +49 30 8413-1356
Email: yaspo@molgen.mpg.de

Dr. Patricia Marquardt (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon:+49 30 8413-1716
Email: patricia.marquardt@molgen.mpg.de

Weitere Informationen:

http://www.molgen.mpg.de

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wissenschaftliches Neuland: Die aufregende Liaison von Zucker und Proteinen
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

Gewässerforscher treffen sich in Cottbus

21.09.2017 | Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie