Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entschlüsseln Funktionsweise von potentiellem Wirkstoff gegen Alzheimer

20.02.2013
Der Wirkstoff Methylenblau gilt als Kandidat für die Behandlung von Alzheimer, denn er verhindert schädliche Verklumpungen sogenannter Tau-Proteine, die für diese Erkrankung typisch sind. Doch warum Methylenblau diese Wirkung hat, war bislang unbekannt.

Wissenschaftler aus Göttingen und Bonn haben nun den Mechanismus aufgeklärt, woraus sich Strategien für eine Entwicklung möglicher Medikamente ableiten lassen. Wie das Forscherteam um Markus Zweckstetter und Eckhard Mandelkow im Fachmagazin „Angewandte Chemie“ berichtet, inaktiviert Methylenblau jene Molekülgruppen, die eine Bindung zwischen den Tau-Proteinen vermitteln.

Methylenblau ist ein Multitalent mit langer Geschichte. Die Substanz ist synthetisch, wurde 1876 erstmals hergestellt und diente seither nicht nur als blaues Färbemittel. Sie wurde auch schon für medizinische Zwecke verwendet – etwa zur Behandlung von Malaria und zur Vorbeugung von Harnwegsinfekten. Inzwischen ist sie auch als Mittel gegen Alzheimer im Gespräch.

Methylenblau wirkt in vielfacher Weise. Im Zusammenhang mit Alzheimer ist besonders bemerkenswert, dass es die Verklumpung von „Tau-Proteinen“ verhindert. Derlei Ablagerungen sind typisch für diverse Demenz-Erkrankungen: Die Protein-Klumpen reichern sich in den Hirnzellen an, stören deren Funktion und können zum Tod der Zellen führen.

„Eigentlich sind Tau-Proteine enorm wichtig, da sie die Verkehrswege innerhalb der Nervenzelle stabilisieren“, erläutert Prof. Eckhard Mandelkow, der in Bonn am Deutschen Zentrum für Neurogenerative Erkrankungen (DZNE) und am Forschungszentrum caesar tätig ist. „Bei Alzheimer allerdings versagen diese Proteine ihren Dienst. Das Verkehrssystem der Zelle bricht zusammen und Versorgungsgüter, die für die Zelle lebensnotwendig sind, gelangen nicht mehr ans Ziel. Außerdem binden die Tau-Proteine aneinander. Diese Aggregate sind ebenfalls schädlich und ein entscheidendes Merkmal der Krankheit.“

Solche Szenarien lassen sich in Tierstudien nachstellen. Bereits vor einiger Zeit hat ein anderes Forscherteam unter der Leitung von Dr. Eva-Maria Mandelkow nachgewiesen, dass Methylenblau die Krankheitssymptome bei Mäusen und Fadenwürmern lindern kann. Doch aussagekräftige Studien mit Patienten gibt es bislang nicht. Außerdem war die Funktionsweise von Methylenblau bisher unklar. „Methylenblau hemmt die Aggregation“, unterstreicht Eckhard Mandelkow. „Aber der Mechanismus dahinter war bislang unbekannt.“

Einblicke in die molekularen Ursachen gibt die Studie, die nun in der Zeitschrift „Angewandte Chemie“ erschienen ist: Die Forschungsgruppe von Markus Zweckstetter am DZNE-Standort Göttingen und dem Max-Planck-Institut für biophysikalische Chemie in Göttingen konnte gemeinsam mit dem Team von Eckhard Mandelkow nachweisen, dass Methylenblau Molekülgruppen inaktiviert, die eine Bindung zwischen den Tau-Proteinen vermitteln. Überdies fanden die Forscher Hinweise dafür, dass der Wirkstoff die Proteine wie ein Abstandshalter auf Distanz hält. Diese Erkenntnisse könnten in die Herstellung modifizierter Formen von Methylenblau und die Entwicklung von Therapien einfließen.

Hintergrund:

Methylenblau reagiert mit Schwefelgruppen

Von zentraler Bedeutung für die aktuelle Studie war die NMR-Spektroskopie, ein leistungsstarkes Verfahren zur Untersuchung von Biomolekülen. „Wir haben festgestellt, dass Methylenblau mit bestimmten Bausteinen des Tau-Proteins reagiert, nämlich mit den Cysteinen“, erläutert Prof. Zweckstetter die Ergebnisse.

Diese Reaktion ist sehr wirkungsvoll. Methylenblau modifiziert die Tau-Proteine nur an entscheidender Stelle: Von den bis zu 441 Bausteinen, aus denen ein Tau-Protein bestehen kann, werden speziell die sogenannten „Cystein“-Proteinbausteine verändert. Direkt betroffen sind die SH-Gruppen, Anhängsel aus Schwefel und Wasserstoff, die für Cysteine typisch sind. Hier klinken sich nun Sauerstoffatome ein.

„Durch diese chemische Veränderung können sich die Tau-Proteine nicht mehr miteinander verknüpfen“, so Zweckstetter. „Dies geschieht sonst, indem SH-Gruppen von verschiedenen Proteinen miteinander reagieren und eine sogenannte Disulfidbrücke bilden. Das ist nun nicht mehr möglich. Denn durch die Reaktion mit Methylenblau fallen die SH-Gruppen weg.“

In einem gesunden Organismus wird die Bildung solcher Disulfidbrücken natürlicherweise unterdrückt. „Mit Hilfe von Antioxidantien versucht die Zelle, schädliche Reaktionen zu verhindern“, sagt Eckhard Mandelkow. „Aber mit dem Alter und auch bei neurodegenerativen Erkrankungen wie Alzheimer lässt dieses Schutzsystem nach, was die Aggregation der Tau-Proteine begünstigt.“

Faltblätter ebenfalls bedeutsam

Für die Zusammenballung der Proteine sei neben den Disulfidbrücken aber noch ein weiterer Mechanismus wichtig, betont Zweckstetter: „Das Tau-Protein aggregiert dann besonders schnell, wenn sich Disulfidbrücken ausbilden. Diese wirken wie eine Initialzündung. Ohne diese Bindung kann das Tau-Protein aber auch aggregieren. Wenn auch viel langsamer.“

Die Ursache dafür liegt in der Gestalt des Moleküls, dessen Rückgrat an mancher Stelle gefalzt werden kann wie eine Ziehharmonika. Solche Regionen können sich zu „Beta-Faltblättern“ aufstapeln, wenn zwei Tau-Proteine dicht genug und mit der passenden Orientierung aneinander geraten. „Dieses Phänomen ist seit langem bekannt“, sagt Zweckstetter. „Auch darauf wirkt Methylenblau.“ Demnach scheinen Methylenblau und insbesondere seine Derivate „Azure A“ und „Azure B“, die unter physiologischen Bedingungen bevorzugt vorliegen, die Aggregation über die Beta-Faltblätter zu unterdrücken. „Hier kommt es zu einer sterischen Hinderung“, meint Zweckstetter. „Wenn sich der Wirkstoff an eine Faltblatt-Region des Tau-Proteins anlagert, dann kann kein weiteres Faltblatt andocken.“

Neben Methylenblau gibt es noch andere Substanzen, die die Aggregation des Tau-Proteins behindern. Manche davon richten sich explizit gegen das Aneinanderheften der Faltblatt-Strukturen. Eine effektive Therapie könne letztlich eine Kombination verschiedener Wirkstoffe erfordern, schätzen die Forscher: „Eine Schlussfolgerung unserer Studie ist sicherlich, dass es verschiedene Wege gibt, um die pathogene Aggregation des Tau-Proteins zu stören.“

Originalveröffentlichung
„Mechanistic Basis of Phenothiazine-driven Inhibition of Tau Aggregation“, Elias Akoury, Marcus Pickhardt, Michal Gajda, Jacek Biernat, Eckhard Mandelkow, Markus Zweckstetter, Angewandte Chemie, DOI: 10.1002/anie.201208290

http://onlinelibrary.wiley.com/doi/10.1002/anie.201208290/abstract

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen.

Dr. Marcus Neitzert | idw
Weitere Informationen:
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics