Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken neuen Nervenzelltyp in der Netzhaut

07.09.2009
In 'Nature Neuroscience': Wie Informationen über sich nähernde Objekte verarbeitet werden

Wenn eine Maus einen Raubvogel entdeckt, muss sie schnell reagieren und die Flucht ergreifen. Dabei erkennt sie zunächst, dass sich ein Objekt annähert. Der Wahrnehmungsprozess beginnt im Auge, genauer gesagt in der Netzhaut oder Retina. Doch was passiert dort genau?

Dr. Thomas Münch vom Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen hat in Zusammenarbeit mit Prof. Rava Azeredo da Silveira von der Ecole Normale Supérieure in Paris, Dr. Botond Roska und weiteren Wissenschaftlern vom Friedrich-Miescher-Institut in Basel sowie der kanadischen Dalhousie University in der Mausretina einen Nervenzelltyp entdeckt, der auf Annäherung spezialisiert ist. Die Forscher haben außerdem wichtige Elemente des informationsverarbeitenden Netzes identifiziert, zu dem diese Zellen gehören, und haben beschrieben, wie diese Informationsverarbeitung den Nervenzellen Empfindlichkeit für sich nähernde Objekte verleiht.

Die Forschungsergebnisse werden in der Fachzeitschrift Nature Neuroscience in einer Online-Vorabpublikation veröffentlicht (6. September 2009; doi 10.1038/nn.2389). Sie wurden von Thomas Münch in der Arbeitsgruppe von Botond Roska am Friedrich-Miescher-Institut für biomedizinische Forschung in Basel (FMI) erarbeitet. Dr. Thomas Münch ist seit Dezember 2008 Gruppenleiter der Arbeitsgruppe "Retinal Circuits and Optogenetics" am Tübinger CIN.

Das Nervensystem, zu dem auch die Netzhaut gehört, besteht aus Milliarden von Zellen. Diese haben verschiedene Formen und physiologische Fähigkeiten und werden von Neurowissenschaftlern in verschiedene Typen eingeteilt. Wichtige Fortschritte in den Neurowissenschaften konnten häufig dann erreicht werden, wenn eine bestimmte Funktion einem bestimmten Nervenzelltyp zugewiesen werden konnte. Diese Funktionen beruhen im Grunde auf Unterscheidungen: Wie unterscheidet das Nervensystem zwischen einem Gesicht und einem anderen? Wie wird zwischen einem sich nähernden und einem seitlich vorbeiwandernden Objekt unterschieden? Die Forschungsarbeiten von Thomas Münch und seinen Kollegen machen deutlich, dass komplizierte visuelle Unterscheidungen bereits in der Netzhaut getroffen werden, das heißt, sehr früh in der visuellen Informationsverarbeitung. Die Netzhaut sendet nämlich über den Sehnerv verschiedenste Informationen in parallelen Bahnen zum Gehirn, wo in der Sehrinde der eigentliche Seheindruck erst entsteht.

Die Forscher haben Nervenzellen in der Retina untersucht, die auf Bewegungen reagieren. Ein Zelltyp, die sogenannten PV5-Ganglienzellen, sammelt und vereint Informationen von vielen kleineren Zellen. Dies ermöglicht es den PV5-Ganglienzellen, die Ränder sich bewegender Objekte zu erfassen. Von diesen kleinen Zellen gibt es zwei Arten: solche, die die PV5-Zelle anregen und solche, die sie hemmen. Die Forscher präsentierten der Netzhaut verschiedene dunkle Balken: einen größer werdenden Balken, um die Annäherung eines Objekts zu simulieren, einen kleiner werdenden Balken für sich entfernende Objekte sowie einen vorbeiwandernden Balken. Es zeigte sich, dass nur die anregenden Zellen aktiv sind, wenn sich ein Objekt im visuellen Feld nähert - also vom Betrachter aus größer wird. PV5-Ganglienzellen erzeugen dann ein starkes Signal ans Gehirn. Wenn aber ein Objekt sich entfernt oder sich seitlich vorbei bewegt, werden zusätzlich auch hemmende Zellen aktiv. Dadurch vermindern sie die anregenden Signale oder heben sie auf. Die Summe von vielen einzelnen, relativ einfachen Funktionselementen wird also in der PV5-Zelle zusammengeführt und verleiht dieser eine neue visuelle Fähigkeit, nämlich die Spezialisierung auf sich nähernde Objekte.

Der wichtigste Bestandteil dieses Nervennetzes der PV5-Ganglienzellen sind die kleinen Zellen, die durch ihre hemmende Wirkung selektiv die Antwort auf sich nicht nähernde Objekte unterdrücken. Diese Zellen waren den Neurowissenschaftlern bereits aus einem ganz anderen Zusammenhang bekannt: dem Dunkelsehen. Bei ihren Experimenten im Tageslicht fanden die Forscher, dass die Signale nun in der umgekehrten Richtung weitergegeben werden als beim Dunkelsehen; die gleiche Nervenleitungsbahn wird also unter verschiedenen Bedingungen zu unterschiedlichen Zwecken genutzt. Dadurch lasse sich illustrieren, so die Forscher, wie effizient mehrere Funktionen von ein und demselben Nervennetz geleistet werden können.

Nähere Informationen:

Die Veröffentlichung:
Thomas A. Münch, Rava Azeredo da Silveira, Sandra Siegert, Tim James Viney, Gautam B. Awatramani, Botond Roska: Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience, Online-Vorabveröffentlichung am 6. September 2009, 19 Uhr, doi 10.1038/nn.2389
Dr. Thomas Münch
CIN - Werner Reichart Centrum für Integrative Neurowissenschaften
T. 0 70 71/29-8 91 82
E-Mail thomas.muench [at] cin.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie