Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken neuen Nervenzelltyp in der Netzhaut

07.09.2009
In 'Nature Neuroscience': Wie Informationen über sich nähernde Objekte verarbeitet werden

Wenn eine Maus einen Raubvogel entdeckt, muss sie schnell reagieren und die Flucht ergreifen. Dabei erkennt sie zunächst, dass sich ein Objekt annähert. Der Wahrnehmungsprozess beginnt im Auge, genauer gesagt in der Netzhaut oder Retina. Doch was passiert dort genau?

Dr. Thomas Münch vom Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen hat in Zusammenarbeit mit Prof. Rava Azeredo da Silveira von der Ecole Normale Supérieure in Paris, Dr. Botond Roska und weiteren Wissenschaftlern vom Friedrich-Miescher-Institut in Basel sowie der kanadischen Dalhousie University in der Mausretina einen Nervenzelltyp entdeckt, der auf Annäherung spezialisiert ist. Die Forscher haben außerdem wichtige Elemente des informationsverarbeitenden Netzes identifiziert, zu dem diese Zellen gehören, und haben beschrieben, wie diese Informationsverarbeitung den Nervenzellen Empfindlichkeit für sich nähernde Objekte verleiht.

Die Forschungsergebnisse werden in der Fachzeitschrift Nature Neuroscience in einer Online-Vorabpublikation veröffentlicht (6. September 2009; doi 10.1038/nn.2389). Sie wurden von Thomas Münch in der Arbeitsgruppe von Botond Roska am Friedrich-Miescher-Institut für biomedizinische Forschung in Basel (FMI) erarbeitet. Dr. Thomas Münch ist seit Dezember 2008 Gruppenleiter der Arbeitsgruppe "Retinal Circuits and Optogenetics" am Tübinger CIN.

Das Nervensystem, zu dem auch die Netzhaut gehört, besteht aus Milliarden von Zellen. Diese haben verschiedene Formen und physiologische Fähigkeiten und werden von Neurowissenschaftlern in verschiedene Typen eingeteilt. Wichtige Fortschritte in den Neurowissenschaften konnten häufig dann erreicht werden, wenn eine bestimmte Funktion einem bestimmten Nervenzelltyp zugewiesen werden konnte. Diese Funktionen beruhen im Grunde auf Unterscheidungen: Wie unterscheidet das Nervensystem zwischen einem Gesicht und einem anderen? Wie wird zwischen einem sich nähernden und einem seitlich vorbeiwandernden Objekt unterschieden? Die Forschungsarbeiten von Thomas Münch und seinen Kollegen machen deutlich, dass komplizierte visuelle Unterscheidungen bereits in der Netzhaut getroffen werden, das heißt, sehr früh in der visuellen Informationsverarbeitung. Die Netzhaut sendet nämlich über den Sehnerv verschiedenste Informationen in parallelen Bahnen zum Gehirn, wo in der Sehrinde der eigentliche Seheindruck erst entsteht.

Die Forscher haben Nervenzellen in der Retina untersucht, die auf Bewegungen reagieren. Ein Zelltyp, die sogenannten PV5-Ganglienzellen, sammelt und vereint Informationen von vielen kleineren Zellen. Dies ermöglicht es den PV5-Ganglienzellen, die Ränder sich bewegender Objekte zu erfassen. Von diesen kleinen Zellen gibt es zwei Arten: solche, die die PV5-Zelle anregen und solche, die sie hemmen. Die Forscher präsentierten der Netzhaut verschiedene dunkle Balken: einen größer werdenden Balken, um die Annäherung eines Objekts zu simulieren, einen kleiner werdenden Balken für sich entfernende Objekte sowie einen vorbeiwandernden Balken. Es zeigte sich, dass nur die anregenden Zellen aktiv sind, wenn sich ein Objekt im visuellen Feld nähert - also vom Betrachter aus größer wird. PV5-Ganglienzellen erzeugen dann ein starkes Signal ans Gehirn. Wenn aber ein Objekt sich entfernt oder sich seitlich vorbei bewegt, werden zusätzlich auch hemmende Zellen aktiv. Dadurch vermindern sie die anregenden Signale oder heben sie auf. Die Summe von vielen einzelnen, relativ einfachen Funktionselementen wird also in der PV5-Zelle zusammengeführt und verleiht dieser eine neue visuelle Fähigkeit, nämlich die Spezialisierung auf sich nähernde Objekte.

Der wichtigste Bestandteil dieses Nervennetzes der PV5-Ganglienzellen sind die kleinen Zellen, die durch ihre hemmende Wirkung selektiv die Antwort auf sich nicht nähernde Objekte unterdrücken. Diese Zellen waren den Neurowissenschaftlern bereits aus einem ganz anderen Zusammenhang bekannt: dem Dunkelsehen. Bei ihren Experimenten im Tageslicht fanden die Forscher, dass die Signale nun in der umgekehrten Richtung weitergegeben werden als beim Dunkelsehen; die gleiche Nervenleitungsbahn wird also unter verschiedenen Bedingungen zu unterschiedlichen Zwecken genutzt. Dadurch lasse sich illustrieren, so die Forscher, wie effizient mehrere Funktionen von ein und demselben Nervennetz geleistet werden können.

Nähere Informationen:

Die Veröffentlichung:
Thomas A. Münch, Rava Azeredo da Silveira, Sandra Siegert, Tim James Viney, Gautam B. Awatramani, Botond Roska: Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience, Online-Vorabveröffentlichung am 6. September 2009, 19 Uhr, doi 10.1038/nn.2389
Dr. Thomas Münch
CIN - Werner Reichart Centrum für Integrative Neurowissenschaften
T. 0 70 71/29-8 91 82
E-Mail thomas.muench [at] cin.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics