Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken neuen Nervenzelltyp in der Netzhaut

07.09.2009
In 'Nature Neuroscience': Wie Informationen über sich nähernde Objekte verarbeitet werden

Wenn eine Maus einen Raubvogel entdeckt, muss sie schnell reagieren und die Flucht ergreifen. Dabei erkennt sie zunächst, dass sich ein Objekt annähert. Der Wahrnehmungsprozess beginnt im Auge, genauer gesagt in der Netzhaut oder Retina. Doch was passiert dort genau?

Dr. Thomas Münch vom Werner Reichardt-Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen hat in Zusammenarbeit mit Prof. Rava Azeredo da Silveira von der Ecole Normale Supérieure in Paris, Dr. Botond Roska und weiteren Wissenschaftlern vom Friedrich-Miescher-Institut in Basel sowie der kanadischen Dalhousie University in der Mausretina einen Nervenzelltyp entdeckt, der auf Annäherung spezialisiert ist. Die Forscher haben außerdem wichtige Elemente des informationsverarbeitenden Netzes identifiziert, zu dem diese Zellen gehören, und haben beschrieben, wie diese Informationsverarbeitung den Nervenzellen Empfindlichkeit für sich nähernde Objekte verleiht.

Die Forschungsergebnisse werden in der Fachzeitschrift Nature Neuroscience in einer Online-Vorabpublikation veröffentlicht (6. September 2009; doi 10.1038/nn.2389). Sie wurden von Thomas Münch in der Arbeitsgruppe von Botond Roska am Friedrich-Miescher-Institut für biomedizinische Forschung in Basel (FMI) erarbeitet. Dr. Thomas Münch ist seit Dezember 2008 Gruppenleiter der Arbeitsgruppe "Retinal Circuits and Optogenetics" am Tübinger CIN.

Das Nervensystem, zu dem auch die Netzhaut gehört, besteht aus Milliarden von Zellen. Diese haben verschiedene Formen und physiologische Fähigkeiten und werden von Neurowissenschaftlern in verschiedene Typen eingeteilt. Wichtige Fortschritte in den Neurowissenschaften konnten häufig dann erreicht werden, wenn eine bestimmte Funktion einem bestimmten Nervenzelltyp zugewiesen werden konnte. Diese Funktionen beruhen im Grunde auf Unterscheidungen: Wie unterscheidet das Nervensystem zwischen einem Gesicht und einem anderen? Wie wird zwischen einem sich nähernden und einem seitlich vorbeiwandernden Objekt unterschieden? Die Forschungsarbeiten von Thomas Münch und seinen Kollegen machen deutlich, dass komplizierte visuelle Unterscheidungen bereits in der Netzhaut getroffen werden, das heißt, sehr früh in der visuellen Informationsverarbeitung. Die Netzhaut sendet nämlich über den Sehnerv verschiedenste Informationen in parallelen Bahnen zum Gehirn, wo in der Sehrinde der eigentliche Seheindruck erst entsteht.

Die Forscher haben Nervenzellen in der Retina untersucht, die auf Bewegungen reagieren. Ein Zelltyp, die sogenannten PV5-Ganglienzellen, sammelt und vereint Informationen von vielen kleineren Zellen. Dies ermöglicht es den PV5-Ganglienzellen, die Ränder sich bewegender Objekte zu erfassen. Von diesen kleinen Zellen gibt es zwei Arten: solche, die die PV5-Zelle anregen und solche, die sie hemmen. Die Forscher präsentierten der Netzhaut verschiedene dunkle Balken: einen größer werdenden Balken, um die Annäherung eines Objekts zu simulieren, einen kleiner werdenden Balken für sich entfernende Objekte sowie einen vorbeiwandernden Balken. Es zeigte sich, dass nur die anregenden Zellen aktiv sind, wenn sich ein Objekt im visuellen Feld nähert - also vom Betrachter aus größer wird. PV5-Ganglienzellen erzeugen dann ein starkes Signal ans Gehirn. Wenn aber ein Objekt sich entfernt oder sich seitlich vorbei bewegt, werden zusätzlich auch hemmende Zellen aktiv. Dadurch vermindern sie die anregenden Signale oder heben sie auf. Die Summe von vielen einzelnen, relativ einfachen Funktionselementen wird also in der PV5-Zelle zusammengeführt und verleiht dieser eine neue visuelle Fähigkeit, nämlich die Spezialisierung auf sich nähernde Objekte.

Der wichtigste Bestandteil dieses Nervennetzes der PV5-Ganglienzellen sind die kleinen Zellen, die durch ihre hemmende Wirkung selektiv die Antwort auf sich nicht nähernde Objekte unterdrücken. Diese Zellen waren den Neurowissenschaftlern bereits aus einem ganz anderen Zusammenhang bekannt: dem Dunkelsehen. Bei ihren Experimenten im Tageslicht fanden die Forscher, dass die Signale nun in der umgekehrten Richtung weitergegeben werden als beim Dunkelsehen; die gleiche Nervenleitungsbahn wird also unter verschiedenen Bedingungen zu unterschiedlichen Zwecken genutzt. Dadurch lasse sich illustrieren, so die Forscher, wie effizient mehrere Funktionen von ein und demselben Nervennetz geleistet werden können.

Nähere Informationen:

Die Veröffentlichung:
Thomas A. Münch, Rava Azeredo da Silveira, Sandra Siegert, Tim James Viney, Gautam B. Awatramani, Botond Roska: Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience, Online-Vorabveröffentlichung am 6. September 2009, 19 Uhr, doi 10.1038/nn.2389
Dr. Thomas Münch
CIN - Werner Reichart Centrum für Integrative Neurowissenschaften
T. 0 70 71/29-8 91 82
E-Mail thomas.muench [at] cin.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie