Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken neue chemische Verbindung

31.05.2016

Wissenschaftler der Universität Leipzig haben in Zusammenarbeit mit Kollegen der Friedrich-Alexander Universität Erlangen-Nürnberg und der Staatlichen Universität für Informationstechnologien, Mechanik und Optik (ITMO) in St. Petersburg eine ganz neue Eigenschaft einer chemischen Verbindungsklasse entdeckt. "Neben interessanten magnetischen Eigenschaften zeichnen sich Kristalle dieser Verbindung auch durch sogenannte Doppelbrechung aus", erklärt Prof. Dr. Evamarie Hey-Hawkins, Chemikerin der Universität Leipzig und Leiterin der Arbeitsgruppe. Ihre Forschungsergebnisse haben die Wissenschaftler in der renommierten Fachzeitschrift "Dalton Transactions" als Titelbeitrag veröffentlicht.

Doppelbrechung ist ein Phänomen, bei dem das einfallende Licht in zwei Komponenten zerlegt wird die unterschiedlich stark gebrochen werden, sodass bei geeigneter Blickrichtung zwei Bilder zu sehen sind. Sie findet beispielsweise Anwendung in Polarisatoren.

Diese Bauteile können als Filter für bestimmte polarisierte elektromagnetische Wellen dienen. Sogenannte Polarisationsgläser, die den gleichen Effekt haben, werden unter anderem auch in einigen Sonnenbrillen verwendet.

In ihrer Publikation beschreiben die Chemiker erstmals die Beobachtung von Doppelbrechung bei einer porösen Koordinationsverbindung.

"Durch detaillierte Analyse der dreidimensionalen Struktur dieser Verbindung, den Gerüstaufbau und die Hohlräume, geben wir eine plausible Erklärung für das Phänomen der Doppelbrechung. Dadurch könnten sich auch ganz neue Möglichkeiten im Bereich der Nanophotonik eröffnen", sagt Hey-Hawkins. Die Nanophotonik befasst sich mit Grundlagen und Anwendungen von optischen Verfahren und Technologien auf die Übertragung, Speicherung und Verarbeitung von Information.

Die seit fünf Jahren bestehende Kooperation zwischen der Gruppe von Prof. Alexandr Vinogradov von der ITMO Universität in St. Petersburg und Prof. Hey-Hawkins hat bereits zu mehreren hochrangigen Publikationen geführt. Im Mai und Juni kommen zwei Doktoranden aus St. Petersburg im Rahmen des "Erasmus+"-Programms für jeweils drei Monate an die Universität Leipzig, um im Arbeitskreis von Prof. Hey-Hawkins zu forschen.

Der renommierten Chemikerin der Universität Leipzig wurde erst kürzlich die Ehrendoktorwürde der Ss. Cyril and Methodius Universität in Skopje, Mazedonien, verliehen. Damit wurden ihre herausragenden wissenschaftlichen Leistungen, aber auch ihr umfangreiches Engagement in internationalen Kooperationen, speziell mit der Ss. Cyril and Methodius Universität, gewürdigt.

Originaltitel der Veröffentlichung in "Dalton Transactions":
"Unique anisotropic optical properties of a highly stable metal-organic framework based on trinuclear iron(III) secondary building units linked by tetracarboxylic linkers with an anthracene core"
DOI: 10.1039/C6DT00390G

Ansprechpartnerin:
Prof. Dr. Evamarie Hey-Hawkins
Institut für Anorganische Chemie
Telefon: +49 341 97-36151
E-Mail: hey@uni-leipzig.de

Weitere Informationen:

http://pubs.rsc.org/en/Content/ArticleLanding/2016/DT/C6DT00390G#!divAbstract

Dipl.-Journ. Carsten Heckmann | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise