Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken mögliche Ursache für Resistenz gegen Brustkrebs-Therapie

21.09.2015

Mit einem neuen Mikroskopie-Verfahren untersuchten Forscher aus Saarbrücken und Heidelberg die Verteilung bestimmter wachstumsfördernder Protein-Rezeptoren auf Brustkrebs-Zellen. Dabei entdeckten sie, dass einer kleinen Gruppe der Tumorzellen genau die krebsfördernden „Pärchen“ dieser Rezeptoren fehlen. Eine solche Gruppe ruhender Zellen könnte nach einer Antikörper-Therapie gegen diese Rezeptoren für Resistenz und erneutes Tumorwachstum verantwortlich sein.

Bei etwa einem Fünftel aller Brustkrebsfälle produzieren die Tumorzellen übermäßig große Mengen eines bestimmten Rezeptors für Wachstumsfaktoren. Die Pärchenbildung dieser sogenannten HER2-Rezeptoren gibt das Signal für Wachstum ins Zellinnere und führt zur ungehemmten Teilung der Krebszellen.

Antikörper, die gezielt an den HER2-Rezeptor andocken, sind ein häufig verordnetes Medikament gegen diesen Tumortyp. Allerdings entwickeln etwa zwei Drittel dieser Tumoren eine Resistenz gegen das Medikament – die Gründe dafür sind bislang nicht bekannt.

Wissenschaftler vom Leibniz-Institut für Neue Materialien (Saarbrücken) und aus dem Deutschen Krebsforschungszentrum (Heidelberg) untersuchten nun mit einem speziellen Mikroskopie-Verfahren eine solche Brustkrebszelllinie (SKBR3). Dabei entdeckten sie eine kleine Gruppe von Zellen, die keine HER2-Pärchen auf ihrer Oberfläche trug.

Aufgrund der Eigenschaften der Zellmembran vermuten die Forscher, dass es sich bei der Untergruppe um ruhende Zellen handelt, die Stammzell-Eigenschaften haben und daher für die Rückfälle nach Behandlung mit dem Antikörper-Medikament verantwortlich sein könnten.

Für ihre Analysen nutzten die Forscher ein als Liquid STEM bezeichnetes Mikroskopie-Verfahren, das Aufnahmen von lebenden Zellen in ihrem flüssigen Medium ermöglicht. Mit dieser Methode untersuchten sie die Verteilung der HER2-Membranproteine auf den Zellen. Das Verfahren erlaubt, zwischen einzelnen Rezeptoren, Pärchen oder größeren Aggregaten zu unterscheiden.

Die entscheidende Zusammenlagerung („Dimerisierung“) zweier HER2-Molelüke war bislang meist mit biochemischen Methoden untersucht worden, die keinen Aufschluss über die einzelne Zelle geben konnten. Mit der Liquid STEM-Mikroskopie konnte nun erstmals das Verhalten der HER2-Moleküle auf lebenden, individuellen Krebszellen in Flüssigkeit beobachtet werden. Bei der herkömmlichen Elektronenmikroskopie dagegen müssen die Zellen entweder in Kunststoff eingebettet oder tiefgefroren werden.

Obwohl die HER-Proteine seit langem im Fokus der Krebsmediziner stehen, war die wichtige Tatsache, dass die HER2-Dimere auf Krebszellen ungleich verteilt sein können, bislang nicht erkannt worden. Die jetzigen Ergebnisse sind der hohen räumlichen Auflösung der Liquid STEM Mikroskopie zu verdanken, mit der sich große Mengen intakter Zellen analysieren lassen.

Originalpublikation:
D. B. Peckys, U. Korf, N. de Jonge: Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Science Advances, 2015, DOI: 10.1126/sciadv.1500165

Ihr Experte:
Prof. Niels de Jonge
INM – Leibniz-Institut für Neue Materialien
Leiter Innovative Elektronenmikroskopie
Tel: 0681-9300-313
niels.dejonge(at)leibniz-inm.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie