Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken Gennetzwerk, das Entstehung von Diabetes begünstigt

09.09.2010
Diabetes Typ 1 ist eine derzeit noch unheilbare Autoimmunerkrankung, bei der das Immunsystem die insulinproduzierenden Zellen der Bauchspeicheldrüse zerstört. Patienten müssen deshalb ihr Leben lang Insulin spritzen.

Im Rahmen einer internationalen Studie haben Forscher erstmals ein ganzes Netzwerk an Genen aufgedeckt, das an der Entstehung des insulinabhängigen Typs der Zuckerkrankheit beteiligt ist. Zudem identifizierten sie den Rezeptor, der dieses Netzwerk steuert. Die Federführung der Studie haben Forscher des Nationalen Genomforschungsnetzes (NGFN) vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch sowie des Imperial College London (Nature, .doi: 10.1038/nature09386)*.

Ob ein Gen abgelesen und in das entsprechende Proteinprodukt übersetzt wird oder nicht, ist unter anderem abhängig von sogenannten Transkriptionsfaktoren. Diese binden an regulatorische Regionen eines Gens und können es auf diese Weise stilllegen oder in der gewünschten Stärke ablesen lassen. Doch reguliert ein Transkriptionsfaktor in der Regel nicht nur einzelne Gene, sondern ganze Gennetzwerke. „In den letzten Jahren wurde eine Vielzahl an Risikogenen entdeckt, die die Entstehung verschiedener Erkrankungen begünstigen. Allerdings ist bislang in den seltensten Fällen der molekulare Mechanismus bekannt, über den diese erblichen Risikofaktoren die Krankheitsentstehung begünstigen“, erklärt Prof. Dr. Norbert Hübner, Leiter der jetzt veröffentlichten Studie, die in Zusammenarbeit mit Dr. Stuart A. Cook vom Imperial College London durchgeführt wurde. Prof. Hübner ist Mitglied des Nationalen Genomforschungsnetzes (NGFN) und forscht am MDC. „Wir haben nun einen Transkriptionsfaktor identifiziert, der ein Gennetzwerk steuert, in das mehrere bekannte Diabetes mellitus Typ 1-Risikogene eingebunden sind.“, führt er weiter aus.

Aufspüren konnten die Forscher das Gennetzwerk, das der Transkriptionsfaktor IRF7 (interferon regulatory factor 7) reguliert, über Untersuchungen an einem Rattenmodell. Das Netzwerk, das die Forscher iDIN (IRF7-driven inflammatory network) genannt haben, enthält 305 Gene. Darunter sind mehrere Gene, die insbesondere in Makrophagen, den „Fresszellen“ des Immunsystems, eine Rolle spielen. Diese Immunzellen sind beispielsweise an der Bekämpfung von Viren, aber auch an der Entstehung von Diabetes mellitus Typ 1 maßgeblich beteiligt. Diabetes Typ 1 tritt zumeist bereits im Kindes- oder Jugendalter auf, etwa nach einer Virusinfektion wie der Mumps. Die Zellen des Immunsystems, die die Viruserkrankung bekämpfen, richten sich fälschlicherweise gegen die körpereigenen, Insulin-produzierenden Zellen der Bauchspeicheldrüse und zerstören sie. Die Medizin spricht in solchen Fällen von Autoimmunerkrankungen.

Rezeptor identifiziert, der das Gennetzwerk steuert
Die jetzigen Untersuchungen zeigen, dass die in den Makrophagen aktivierten Signalwege, die an der Entstehung von Diabetes mellitus Typ 1 beteiligt sind, mit Signalwegen überlappen, die durch eine Infektion mit dem Epstein-Barr-Virus angeschaltet werden. So konnten die Wissenschaftler das Gen Ebi2 (Epstein-Barr virus-induced gene 2) als Kandidaten identifizieren, der die Expression des Transkriptionsfaktors IRF7 und damit das Gennetzwerk iDIN beeinflusst. Das Gen Ebi2 kodiert für ein Rezeptormolekül, das von den Forschern auf Makrophagen verschiedener Gewebe der Maus nachgewiesen werden konnte. „Wir konnten durch Untersuchungen im Maus- und im Rattenmodell zeigen, dass Tiere, die weniger EBI2-Protein bilden, mehr Makrophagen haben als Kontrolltiere.“

Um eine Übertragbarkeit der Ergebnisse auf den Menschen zu überprüfen, wurde auf Daten der Mainzer Gutenberg-Herz-Studie (GHS) zurückgegriffen. Prof. Dr. Stefan Blankenberg, einer der beiden Leiter der GHS und ebenfalls NGFN-Mitglied, erklärt: „Wir analysierten genomweite Expressionsdaten von isolierten Monozyten, die von 1.490 gesunden Personen stammen.“ Monozyten sind im Blut zirkulierende Immunzellen, die ausreifen und sich zu Makrophagen entwickeln können. „Tatsächlich gelang es uns, ein von dem Transkriptionsfaktor IRF7 gesteuertes Gennetzwerk im Menschen nachzuweisen, das dem iDIN Gennetzwerk der Ratte stark ähnelt, und damit die Gültigkeit der Ergebnisse für den Menschen zu untermauern.“

Um die Legitimität der erhobenen Befunde zusätzlich abzusichern, wurde eine zweite, von der GHS unabhängige Probandengruppe in die Analyse einbezogen. Daten von 758 Personen aus dem EU-Projekt Cardiogenics bestätigten die Erkenntnisse der Wissenschaftler. Leiter des in Lübeck koordinierten Projekts sind Prof. Dr. Heribert Schunkert und Prof. Dr. Jeanette Erdmann, ebenfalls Wissenschaftler aus dem NGFN und Mitautoren der Studie.

„Die weitere Analyse der Daten“, fasst Prof. Hübner zusammen, „zeigte, dass die iDIN Gene das Diabetes mellitus Typ 1 Risiko tatsächlich beeinflussen und der Rezeptor EBI2, der die iDIN Gene reguliert, eine Rolle bei der Entstehung dieser Autoimmunerkrankung spielt. Zusätzlich konnten wir die Bedeutung der Makrophagen in der Krankheitsentstehung unterstreichen sowie aufzeigen, dass bei Diabetes mellitus Typ 1 und Infektionen mit dem Ebstein-Barr-Virus ähnliche Signalwege beteiligt sind.“

Originaltitel der Publikation:
A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk
Autoren: M. Heinig, E. Petretto, C. Wallace, L. Bottolo, M. Rotival, H. Lu, Y. Li, R. Sarwar, S.R. Langley, A. Bauerfeind, O. Hummel, Y.-A. Lee, S. Paskas, C. Rintisch, K. Saar, .J Cooper, R. Buchan, E.E. Gray, J.G. Cyster, Cardiogenics Consortium, J. Erdmann, C. Hengstenberg, S. Maouche, W.H. Ouwehand, C.M. Rice, N.J. Samani, H. Schunkert, A.H. Goodall, H. Schulz, H. Roider, M. Vingron, S. Blankenberg, T. Münzel, T. Zeller, S. Szymczak, A. Ziegler, L. Tiret, D.J. Smyth, M. Pravenec, T.J. Aitman, F. Cambien, D. Clayton, J.A. Todd, N. Hubner und S.A. Cook

Nature advance online publication 08.09.2010: http://dx.doi.org/10.1038/nature09386

Nationales Genomforschungsnetz (NGFN)
Das Bundesministerium für Bildung und Forschung (BMBF) fördert die Untersuchung von Herz-Kreislauf- und Stoffwechsel-Erkrankungen seit 2001 im Nationalen Genomforschungsnetz (NGFN). Die Förderung wird seit 2008 im Bereich NGFN-Plus in dem Programm der Medizinischen Genomforschung fortgeführt. Die hier vorgestellten Arbeiten wurden unter Beteiligung des Integrierten Verbundes Genetik des Herzversagens (Koordinator Prof. Dr. Hugo A. Katus, Heidelberg) im Rahmen von NGFN-Plus angefertigt. www.ngfn.de
Max-Delbrück-Centrum für Molekulare Medizin (MDC)
Das MDC wurde 1992 auf dem Campus Berlin-Buch gegründet. Es ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren und erhält seine Grundfinanzierung von jährlich rund 61 Millionen Euro zu 90 Prozent vom Bundesforschungsministerium und zu zehn Prozent vom Land Berlin. Hinzu kommen von den Forschern eingeworbene Drittmittel von jährlich mehr als 20 Millionen Euro. Am MDC arbeiten derzeit 1 423 Menschen, davon sind rund 1 022 Wissenschaftler, unter ihnen rund 440 Gastforscher. Es kooperiert eng mit der Charité, dem Forschungsinstitut für Molekulare Pharmakologie (FMP) und dem Biotechnologiepark auf dem Campus mit seinen 50 Firmen und 740 Mitarbeitern. Insgesamt arbeiten auf dem Campus Berlin-Buch über 2 200 Menschen.
Kontakt:
Prof. Dr. Norbert Hübner
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Tel.: 030-9406-2530
E-Mail: nhuebner@mdc-berlin.de
Pressekontakte:
Dr. Silke Argo
NGFN Geschäftsstelle
c/o Deutsches Krebsforschungszentrum, V025
Im Neuenheimer Feld 280, 69120 Heidelberg
Tel.: 06221-424743
Fax: 06221-424651
E-Mail: s.argo@dkfz.de
Internet: www.ngfn.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie