Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus Dresden und Zürich gelingt einzigartiger Blick auf Zellteilung

24.02.2011
Zu den genauen Vorgängen bei der Zellteilung gab es bisher gerade hinsichtlich des letzten Abtrennens der gebildeten Tochterzellen nur Vermutungen.

Doch die dabei ablaufenden Prozesse konnten nun durch Dr. Thomas Müller-Reichert von der Medizinischen Fakultät Carl Gustav Carus der TU Dresden und die Züricher Forscher-Kollegen um Dr. Daniel Gerlich genauer ermittelt und auch bildlich dargestellt werden. Diese Forschungsergebnisse werden im angesehenen Fachjournal Science veröffentlicht.


Bildbeschreibung: Grün: die an den Enden der interzellulären Brücke befindlichen Spiralen Rot: die innerhalb der interzellulären Brücke verlaufenden röhrenförmigen Proteinstrukturen (Mikrotubuli) Gelb: Zellmembran, die die interzelluläre Brücke umschließt Die neu entstandenen Tochterzellen sind nicht sichtbar.
Abbildung: Thomas Müller-Reichert

An den Enden der während des Trennungsprozesses entstehenden „Brücke“ zwischen den Tochterzellen bilden sich spiralförmige Strukturen aus, die die Brücke mechanisch zusammendrücken. Gleichzeitig werden die mittig verlaufenden Mikrotubuli (kleinste röhrenförmige Proteinstrukturen) in Vorbereitung auf die endgültige Zelltrennung abgebaut.

Dr. Thomas Müller-Reichert, Leiter der Core Facility Imaging im Medizinisch-Theoretischen Zentrum der Medizinischen Fakultät Dresden, konnte gemeinsam mit seinen Kollegen Daniel Gerlich und Julien Guizetti von der ETH Zürich (Schweiz) einen völlig neuen Aspekt der Zellteilung aufdecken. „Mittels Lebendzellbeobachtung, hochauflösender Lichtmikroskopie – sogenannter „Structured Illumination“ – und drei-dimensionaler Rekonstruktion durch Elektronentomographie konnten wir kleinste Spiralen sichtbar machen, deren Filamente einen Durchmesser von nur 17 Nanometern haben“, berichtet Dr. Müller-Reichert. Diese Spiralen bilden sich an den Ansätzen des die Tochterzellen noch verbindenden Stranges. Die Spiralen der interzellulären Brücke können sich zusammenziehen. „Dadurch entstehen Kräfte“, erklärt Dr. Müller-Reichert, „die den Durchmesser der interzellulären Brücke an diesen Stellen verringern und letztendlich die Zelltrennung verursachen.“

Die Membran kann verschmelzen, nachdem mit dem „Zusammendrücken“ einhergehend ein Abbau der in der interzellulären Brücke verlaufenden winzigen Proteinröhrchen stattgefunden hat. So wird diese letzte Zellverbindung aufgelöst und die komplette Trennung der Tochterzellen kann erfolgen.

Die Entdeckung dieser sich zusammenziehenden Spiralen an der interzellulären Brücke und die Beteiligung des Proteinkomplexes ESCRT-III an diesem Prozess hat umfassende und weitreichende Bedeutung für das Verständnis der Zellteilung.

Vorabveröffentlichung der Forschungsergebnisse bei sciencexpress (Doi:10.1126/science.1201847).

Kontakt:
Technische Universität Dresden
Medizinische Fakultät Carl Gustav Carus
Core Facility Imaging
Dr. Thomas Müller-Reichert
E-Mail: mueller-reichert@tu-dresden.de

Holger Ostermeyer | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Berichte zu: Facility Management Spiralen Tochterzelle Zellteilung Zelltrennung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise