Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus Dresden und Zürich gelingt einzigartiger Blick auf Zellteilung

24.02.2011
Zu den genauen Vorgängen bei der Zellteilung gab es bisher gerade hinsichtlich des letzten Abtrennens der gebildeten Tochterzellen nur Vermutungen.

Doch die dabei ablaufenden Prozesse konnten nun durch Dr. Thomas Müller-Reichert von der Medizinischen Fakultät Carl Gustav Carus der TU Dresden und die Züricher Forscher-Kollegen um Dr. Daniel Gerlich genauer ermittelt und auch bildlich dargestellt werden. Diese Forschungsergebnisse werden im angesehenen Fachjournal Science veröffentlicht.


Bildbeschreibung: Grün: die an den Enden der interzellulären Brücke befindlichen Spiralen Rot: die innerhalb der interzellulären Brücke verlaufenden röhrenförmigen Proteinstrukturen (Mikrotubuli) Gelb: Zellmembran, die die interzelluläre Brücke umschließt Die neu entstandenen Tochterzellen sind nicht sichtbar.
Abbildung: Thomas Müller-Reichert

An den Enden der während des Trennungsprozesses entstehenden „Brücke“ zwischen den Tochterzellen bilden sich spiralförmige Strukturen aus, die die Brücke mechanisch zusammendrücken. Gleichzeitig werden die mittig verlaufenden Mikrotubuli (kleinste röhrenförmige Proteinstrukturen) in Vorbereitung auf die endgültige Zelltrennung abgebaut.

Dr. Thomas Müller-Reichert, Leiter der Core Facility Imaging im Medizinisch-Theoretischen Zentrum der Medizinischen Fakultät Dresden, konnte gemeinsam mit seinen Kollegen Daniel Gerlich und Julien Guizetti von der ETH Zürich (Schweiz) einen völlig neuen Aspekt der Zellteilung aufdecken. „Mittels Lebendzellbeobachtung, hochauflösender Lichtmikroskopie – sogenannter „Structured Illumination“ – und drei-dimensionaler Rekonstruktion durch Elektronentomographie konnten wir kleinste Spiralen sichtbar machen, deren Filamente einen Durchmesser von nur 17 Nanometern haben“, berichtet Dr. Müller-Reichert. Diese Spiralen bilden sich an den Ansätzen des die Tochterzellen noch verbindenden Stranges. Die Spiralen der interzellulären Brücke können sich zusammenziehen. „Dadurch entstehen Kräfte“, erklärt Dr. Müller-Reichert, „die den Durchmesser der interzellulären Brücke an diesen Stellen verringern und letztendlich die Zelltrennung verursachen.“

Die Membran kann verschmelzen, nachdem mit dem „Zusammendrücken“ einhergehend ein Abbau der in der interzellulären Brücke verlaufenden winzigen Proteinröhrchen stattgefunden hat. So wird diese letzte Zellverbindung aufgelöst und die komplette Trennung der Tochterzellen kann erfolgen.

Die Entdeckung dieser sich zusammenziehenden Spiralen an der interzellulären Brücke und die Beteiligung des Proteinkomplexes ESCRT-III an diesem Prozess hat umfassende und weitreichende Bedeutung für das Verständnis der Zellteilung.

Vorabveröffentlichung der Forschungsergebnisse bei sciencexpress (Doi:10.1126/science.1201847).

Kontakt:
Technische Universität Dresden
Medizinische Fakultät Carl Gustav Carus
Core Facility Imaging
Dr. Thomas Müller-Reichert
E-Mail: mueller-reichert@tu-dresden.de

Holger Ostermeyer | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Berichte zu: Facility Management Spiralen Tochterzelle Zellteilung Zelltrennung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie