Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der Universität Halle entdecken spontane Chiralität in Flüssigkeiten

04.09.2014

Forscher haben bislang geglaubt, dass eine spontane Trennung chiraler Moleküle nur im festen, kristallinen Zustand möglich ist.

Chemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) haben nun erstmals nachgewiesen, dass diese sogenannte spontane Racematspaltung auch in Flüssigkeiten beobachtet werden kann. Die von den Wissenschaftlern um Prof. Dr. Carsten Tschierske beschriebene Spaltung könnte bei der Entstehung des Lebens eine entscheidende Rolle gespielt haben.


Modell chiraler Moleküle und Ansicht unter Polarisationsmikroskop.

(Bild: Carsten Tschierske)

Ihre Ergebnisse sind in der renommierten Fachzeitschrift „Nature Chemistry“ online (bit.ly/chiralMLU) veröffentlicht und werden im Oktober 2014 in gedruckter Form erscheinen.

Die erste Spaltung chiraler Moleküle - Moleküle, die mit ihrer spiegelbildlichen Form nicht zur Deckung gebracht werden können - gelang Louis Pasteur im Jahr 1848 durch Kristallisation und manuelles Aussortieren der Kristalle unter dem Mikroskop.

Chemiker um Prof. Dr. Carsten Tschierske haben nun erstmals gezeigt, dass eine spontane Trennung von chiralen Molekülen in gewöhnlichen Flüssigkeiten erfolgen kann. Damit liefern sie einen neuen möglichen Ansatz zur Klärung des Ursprungs der einheitlichen Chiralität von Kohlenhydraten und Aminosäuren.

„Kohlenhydrate und Aminosäuren sind die Bausteine des Lebens, die in der Natur in jeweils nur einer spiegelbildlichen Form vorliegen. Diese Einheitlichkeit ist eine unabdingbare Voraussetzung für das Funktionieren biologischer Systeme. Bisher ungeklärt war jedoch, wie sich die Einheitlichkeit herausbilden konnte“, erklärt der Chemiker Tschierske.

„Denn unter den ursprünglichen Bedingungen auf der Erde entstanden chirale Moleküle zunächst als Gemische, die die gleiche Anzahl spiegelbildlicher und zugleich bildlicher Moleküle enthielten.“

Erklären kann dieses Phänomen die von den halleschen Wissenschaftlern entdeckte spontane Racematspaltung in Flüssigkeiten, kombiniert mit der Chiralitätsverstärkung. Voraussetzung für die Spaltung chiraler Moleküle in Flüssigkeiten ist, dass sich beide spiegelbildlichen Formen der Moleküle in einem schnellen Prozess ineinander umwandeln können.

Mit dem Konzept der dynamischen Racematspaltung führen die Chemiker einen Paradigmenwechsel auf dem Gebiet der Stereochemie ein. Die so einmal erzeugte einheitliche Chiralität von Flüssigkeiten kann zudem - nach deren Fixierung - als Hilfsmittel oder Katalysator für die Synthese von Pharmazeutika und anderen chiralen Wirkstoffen genutzt werden.

Veröffentlichung in "Nature Chemistry"
(zunächst online unter www.nature.com/nchem; Print-Veröffentlichung folgt)
"Chiral self-sorting and amplification in isotropic liquids of achiral molecules"
Autoren: Christian Dressel, Tino Reppe, Marko Prehm, Marcel Brautzsch & Carsten Tschierske

Online: bit.ly/chiralMLU
DOI: 10.1038/nchem.2039

Weitere Informationen:

http://bit.ly/chiralMLU

Sarah Huke | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie

Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten

23.05.2017 | Physik Astronomie