Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher aus Berlin und Singapur entschlüsseln Kommunikationsnetzwerk in humanen Stammzellen

02.07.2013
Wissenschaftler des A*STAR Genom-Instituts Singapur (GIS) und des Max-Planck-Instituts für molekulare Genetik (MPIMG) in Berlin haben ein molekulares Netzwerk in menschlichen (humanen) embryonalen Stammzellen (hES-Zellen) entschlüsselt, das Kommunikationssignale der Zellen aufnimmt, um Stammzellen in ihrem besonderen Zellzustand zu erhalten. Die Forscher berichten über ihre Arbeit in der aktuellen Juni-Ausgabe der Zeitschrift Molecular Cell.

Mit der medizinischen Anwendung hES-Zellen verbinden sich große Hoffnungen, daher werden sie von Wissenschaftlern auf der ganzen Welt untersucht. hES-Zellen zeichnen sich dadurch aus, dass sich aus ihnen alle anderen Zellarten bzw. Gewebe eines Organismus entwickeln können.


Kolonie von menschlichen embryonalen Stammzellen (100fache Vergrößerung)
Bild: Jonathan Göke/Genome Institute of Singapore

Diese besondere Eigenschaft wird als Pluripotenz bezeichnet. Für die Aufrechterhaltung der Pluripotenz sind eine Reihe unterschiedlicher Faktoren erforderlich, zu denen unter anderem auch die Verwendung von Kommunikationswegen innerhalb der Zelle gehört.

Die Kommunikation einzelner Zellen untereinander ist eine Schlüsselfunktion von vielzelligen Lebewesen. Damit beispielweise aus dem noch undifferenzierten Gewebe eines Embryos spezifische Organe entstehen können, müssen ganze Gruppen von Zellen bestimmte Signale erhalten und ordnungsgemäß darauf reagieren. Fehler bei der Signalübertragung können dazu führen, dass Zellen falsch reagieren und Krankheiten wie zum Beispiel Krebs entstehen.

Die Kommunikationssignale, die in hES-Zellen verwendet werden, aktivieren eine Kettenreaktion, den sogenannten extrazellulär-regulierten Kinase (ERK)-Pathway. Dieser führt dazu, dass in jeder Zelle genetische Informationen aktiviert werden. Wissenschaftler des GIS und des MPIMG haben jetzt untersucht, um welche genetischen Informationen es sich dabei handelt. Dabei entdeckten sie ein ganzes Netzwerk für molekulare Kommunikation innerhalb der Zellen.

Die Forscher untersuchten, wo ERK2, ein Mitglied der ERK-Familie, mit dem Genom interagiert. Sie fanden heraus, dass ERK2 gezielt nicht-kodierende Gene, Histone sowie spezifische Gene für den Zellzyklus, den Stoffwechsel und die Aufrechterhaltung der Pluripotenz der Stammzellen aktiviert.

Der ERK-Signalweg enthält ausserdem einen Transkriptionsfaktor, ELK1, der mit ERK2 interagiert und dadurch genetische Informationen aktiviert. Interessanterweise fanden die Forscher heraus, dass ELK1 noch eine zweite, völlig entgegengesetzte Funktion haben kann.

An denjenigen Positionen im Genom, die nicht durch ERK2 aktiviert werden, unterdrückt ELK1 die genetische Information und erhält dadurch die Zelle in ihrem undifferenzierten Zustand. Die Autoren gehen davon aus, dass diese zweiseitige Kontrolle der genetischen Aktivität durch ELK1 mit dafür verantwortlich ist, dass eine Zelle im Zustand der Stammzelle verbleibt. Ihre Ergebnisse sind vor allem für Stammzellforscher interessant, unterstützen aber auch die Forschung in anderen benachbarten Gebieten.

„Der ERK-Signalweg ist bereits seit vielen Jahren bekannt, aber dies ist das erste Mal, dass wir das gesamte Spektrum der genomischen Antwort innerhalb der Stammzellen sehen können“, erläutert Jonathan Göke, Wissenschaftler am GIS in Singapur und Erstautor der Studie. „Wir haben eine Vielzahl an biologischen Prozessen gefunden, die mit diesem Signalweg verbunden sind. Zusätzlich konnten wir aber auch einige neue und völlig unerwartete Muster aufklären, wie beispielsweise die Doppelfunktion von ELK1. Sehr spannend wird es jetzt herauszufinden, wie sich dieses Kommunikationsnetzwerk in anderen Zellen und Geweben oder bei Krankheiten verhält beziehungsweise verändert.“

“Besonders beeindruckend ist an dieser Arbeit, wie mit Hilfe der Bioinformatik Informationen aus den experimentellen Daten herausgefiltert werden konnten“, urteilt Martin Vingron, Direktor am Max-Planck-Institut für molekulare Genetik in Berlin und Ko-Autor der Studie. Und Huck Hui Ng, Direktor des A*STAR Genom-Instituts Singapur ergänzt: „Die Ergebnisse sind deswegen so bedeutsam, weil sie das Signal-Netzwerk der Zelle und dessen Einbindung in das übergeordnete Regulationsnetzwerk beschreiben. Das Verständnis der Biologie von embryonalen Stammzellen ist ein erster Schritt, um die Einsatzmöglichkeiten und Grenzen eines medizinischen Einsatzes von embryonalen Stammzellen verstehen zu können.”

Hintergrundinformation:

Über das Genom-Institut Singapur (GIS)
Das Genom-Institut Singapur (GIS) ist eine Forschungseinrichtung der Agentur für Wissenschaft, Technologie und Forschung (Agency for Science, Technology and Research, A*STAR). Die Hauptforschungsrichtungen am GIS umfassen Systembiologie, Stammzellforschung und Entwicklungsbiologie, Biologie von Krebserkrankungen und Pharmakologie, Humangenetik, Infektionskrankheiten, Genomische Technologien sowie Bioinformatik. Das GIS stellt Infrastruktur im Bereich der Genomforschung zur Verfügung, fördert wissenschaftlichen Nachwuchs und fungiert als Brücke zwischen akademischer Forschung und Industrie, um bedeutende wissenschaftliche Fragestellungen zu untersuchen.
www.gis.a-star.edu.sg
www.a-star.edu.sg

Über das Max-Planck-Institut für molekulare Genetik (MPIMG)
Das Max-Planck-Institut für molekulare Genetik (MPIMG) in Berlin ist eine der führenden Genomforschungseinrichungen in Europa und gehört zu den größten Forschungsinstituten der Max-Planck-Gesellschaft. Es umfaßt vier Abteilungen, eine unabhängige Forschungsgruppe sowie eine Reihe von ebenfalls unabhängigen Nachwuchsforschungsgruppen („Otto-Warburg“Laboratorium“).
Die Forschung am MPIMG konzentriert sich auf die Analyse des Genoms des Menschen und anderer Organismen. Damit leistet es einen Beitrag zu einem umfassenden Verständnis biologischer Abläufe im Organismus und zur Aufklärung der molekularen Ursachen vieler menschlicher Erkrankungen. Ziel der gemeinsamen Anstrengungen aller Gruppen des MPIMG ist es, auf molekularem Niveau neue Einblicke in die Entstehung von Krankheiten zu gewinnen, um so zu einer Entwicklung ursachengerechter Behandlungsmethoden beizutragen.

Weitere Informationen:
http://www.gis.a-star.edu.sg
http://www.a-star.edu.sg
http://www.molgen.mpg.de

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik