Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher ahmen molekulares Gedränge nach

01.03.2017

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen Bedingungen nun erstmals in künstlichen Vesikeln naturgetreu simulieren. Die Erkenntnisse helfen der Weiterentwicklung von Nanoreaktoren und künstlichen Organellen, berichten die Forscher in der Fachzeitschrift «Small».

Im Inneren einer Zelle herrscht dichtes Gedränge. Neben hunderttausenden Makromolekülen wie Proteinen tummelt sich eine Unzahl an DNA, RNA und kleineren Molekülen und bilden eine dickflüssige Wasserlösung. Diese Enge nennt man in der Wissenschaft «molecular crowding». Der Effekt kann dazu führen, dass sich einige Eigenschaften eines Moleküls wesentlich verändern.


Enzymatische Reaktion im Inneren eines Nanoreaktors, links ohne molekulares Gedränge und rechts mit.

Universität Basel, Departement Chemie

Das Verhalten eines «freien» Proteins oder Enzyms in einem Reagenzglas lässt sich also nicht unbedingt auf die natürlichen Vorgänge übertragen, da die Viskosität innerhalb einer lebenden Zelle viel höher ist als in einer normalen Wasserlösung. Im Labor konnte bisher allerdings nur die hohe Konzentration an Molekülen nachgeahmt werden, nicht aber gleichzeitig der geschlossene Raum wie beispielsweise in einer Zelle.

Mutter Natur nachahmen

Ein Forscherteam um Prof. Wolfgang Meier von der Universität Basel hat nun ein System entwickelt, welches dem natürlichen Vorbild einen wesentlichen Schritt näherkommt, indem es erstmals den Crowding-Effekt innerhalb eines geschlossenen Vesikels simuliert hat. «Das Milieu innerhalb einer Zelle wirkt sich wesentlich auf die stattfindenden chemischen Reaktionen aus, weshalb wir dieses so naturgetreu wie möglich nachahmen wollen», so Meier.

Um die zelluläre Umgebung nachzubauen, stellten die Forscher vom Departement Chemie nanoskopische Vesikel her, sogenannte Polymersome, und beluden diese mit dem Enzym Meerrettichperoxidase, sowie einer hochviskosen Lösung als Crowding-Komponente. Dadurch liess sich zum ersten Mal die Kinetik von chemischen Reaktionen durch ein bestimmtes Enzym unter Berücksichtigung von «molecular crowding» und in einem abgeschlossenen Raum bestimmen. Es zeigte sich deutlich, dass beide Faktoren die Reaktionsgeschwindigkeit beeinflussen.

Chemische Reaktionsgeschwindigkeit regulieren

«Unser Design berücksichtigt die natürlichen Umgebungsfaktoren, die die Leistung von Enzymen beeinflussen, und bringt uns so wesentlich weiter in der Entwicklung von Nanoreaktoren», sagt Meier. Die Resultate deuten ebenfalls daraufhin, dass sich das Verhalten von Enzymen durch den Einsatz des Crowding-Effekts gezielt regulieren lässt – ein wichtiger Faktor in der Entwicklung künstlicher Organelle für Enzymersatztherapien.

Originalartikel

Patric Baumann, Mariana Spulber, Ozana Fischer, Anja Car, Wolfgang Meier
Investigation of horseradish peroxidase kinetics in an “organelle like” environment
Small (2017), doi: 10.1002/smll.201603943

Weitere Auskünfte

Prof. Dr. Wolfgang P. Meier, Universität Basel, Departement Chemie, Tel. +41 61 207 38 02, E-Mail: Wolfgang.Meier@unibas.ch

Reto Caluori | Universität Basel

Weitere Berichte zu: Enzym Meerrettichperoxidase Nanoreaktoren Organelle Polymersome RNA Reagenzglas Viskosität Zelle dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie