Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Form zur Funktion: Die Sehgrube im Visier Leipziger Wissenschaftler

24.01.2014
Gestochen scharf sieht der Mensch nur mit einer Stelle der Netzhaut: der Fovea centralis, auch Sehgrube genannt. Doch warum das so ist, darüber konnten Wissenschaftler bislang nur Vermutungen anstellen.

Forscher der Universität Leipzig und des Universitätsklinikums Leipzig haben nun ein neuartiges mathematisches Modell entwickelt, das die Grundlage zu einem tiefergehenden Verständnis der Struktur und Funktionsweise der Sehgrube legt. Vorgestellt wurde das Modell in der aktuellen Ausgabe der Zeitschrift „Experimental Eye Research“.


Visualisierung der rekonstruierten Oberfläche der Sehgrube des linken Auges.
Patrick Scheibe, Translationszentrum für Regenerative Medizin

Bisherige mathematische Modelle gehen von der vereinfachten Annahme eines gleichmäßig-symmetrischen Aufbaus der Sehgrube aus. Das neue Leipziger Modell berücksichtigt eine anatomische Besonderheit: Weil zwischen Sehgrube und Sehnerv die Fasern der Nervenzellen zusammenlaufen, ist die Nervenfaserschicht auf der zur Nase gewandten Seite der Sehgrube dicker als im übrigen Bereich.

Diese asymmetrische Struktur lässt sich nun erstmals mit nur vier charakteristischen und einfach zu ermittelnden Parametern abbilden. „Rechnen wir diese Daten hoch, können wir die gesamte Oberfläche der Sehgrube in einem sehr präzisen 3D-Modell realisieren“, erläutert Projektleiter Patrick Scheibe.

„Das ermöglicht uns, die Sehgrube als Linse nachzubauen und experimentell auf ihre Funktionsweise hin zu untersuchen.“ So lässt sich künftig prüfen, ob einfallendes Licht durch die Grubenform der Sehgrube einen Lupeneffekt erzeugt, der besonders scharfe Bilder hervorbringt. Oder ob die Grubenform – wie bislang vermutet – wirklich nur dazu dient, dass kein störendes Gewebe den Weg des Lichts zu den empfindlichen Photorezeptoren behindert.

Verbesserte Diagnostik bei Makulallöchern

Mit dem Wissen um die asymmetrische Form der Sehgrube zeichnen sich wesentliche Verbesserungen bei der Frühdiagnostik von Makulalöchern ab. Diese auch als Makulaforamen bezeichneten Defekte der Netzhaut in der Sehgrube entwickeln sich in Folge krankhafter Wechselwirkungen zwischen Glaskörper und zentraler Netzhaut und führen zu einem Verlust des zentralen Sehens.

„Bei Patienten mit Makulaforamen ist insbesondere die Analyse des Partnerauges von großem Interesse, da nicht selten beide Augen – wenn auch zeitlich versetzt – von der Erkrankung betroffen sind“ sagt Dr. Franziska Rauscher von der Leipziger Universitätsaugenklinik. „Mit dem Modell können Strukturveränderungen der Sehgrube anhand weniger Zahlenwerte exakt dargestellt und mit der Normalform verglichen werden. Das lässt uns erkennen, ob biomechanische Kräfte Formveränderungen bewirken, die die Entwicklung von Makulaforamen begünstigen.“

Wenn Makulaforamen möglichst früh erkannt und operiert werden, sind die Chancen auf eine vollständige Wiederherstellung der Sehkraft hoch. „Durch die Entwicklung einer verbesserten Frühdiagnostik auf der Basis des neuen Modells kann die Lebensqualität betroffener Patienten erheblich gesteigert werden“, ist sich die Wissenschaftlerin sicher.

Fachübergreifende Zusammenarbeit

Die Entwicklung des neuen Modells ist das Ergebnis der Zusammenarbeit von Wissenschaftlern des Translationszentrums für Regenerative Medizin (TRM) Leipzig, der Universitätsaugenklinik Leipzig, des Paul-Flechsig-Instituts für Hirnforschung (PFI) und weiterer Einrichtungen der Universität Leipzig. Fachlich begleitet wird das langjährige Projekt von Prof. Dr. Andreas Reichenbach (PFI) und Prof. Dr. Peter Wiedemann (Universitätsaugenklinik).

Hintergrund: Die Sehgrube

Die Fovea centralis, die auf Grund ihrer Form auch als Seh- oder Netzhautgrube bezeichnet wird, ist der Ort des schärfsten Sehens. Sie befindet sich in der Mitte der Macula lutea, kurz Makula oder auch Gelber Fleck genannt. Auf einem Durchmesser von etwa 1,5 mm stehen dort dicht gedrängt die Zapfen-Photorezeptoren, die für die Erkennung von Formen und Farben zuständig sind.

Die Sehgrube prägt sich erst zu einem relativ späten Zeitpunkt der Individualentwicklung aus. Erst zum Zeitpunkt der Geburt werden die zentralen Zapfen-Photorezeptoren dünner und wandern auf die zukünftige Sehgrube zu, gegenläufig dazu bewegen sich die inneren Netzhautschichten von der Sehgrube weg. Dieser Prozess ist erst im späteren Kindesalter abgeschlossen; die Form der so entstandenen Sehgrube ist individuell verschieden.

Fachveröffentlichung

Parametric model for the 3D reconstruction of individual fovea shape from OCT data, Experimental Eye Research, Volume 119, February 2014, Pages 19-26, ISSN 0014-4835, http://dx.doi.org/10.1016/j.exer.2013.11.008

Information und Kontakt

Patrick Scheibe
Translationszentrum für Regenerative Medizin | Universität Leipzig
Philipp-Rosenthal-Straße 55 | 04103 Leipzig
Telefon: +49 341 97 39483
Fax: +49 341 9739609
E-Mail: patrick.scheibe@trm.uni-leipzig.de

Maria Garz | idw
Weitere Informationen:
http://www.trm.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics