Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluoreszierende Farbstoffe aus dem Druckkochtopf

30.01.2017

Wasser statt giftiger Lösungsmittel zur Farbstoffherstellung – an der TU Wien wurde ein neues umwelt- und ressourcenschonendes Verfahren zur Herstellung organischer Pigmente entwickelt.

Perylenbisimide stellen eine in der Wissenschaft sehr stark untersuchte Klasse an chemischen Stoffen dar, da sie interessante Farbstoffe sind. Werden diese rötlichen Pigmente aufgelöst, entstehen fluoreszierende Lösungen, die unter UV-Licht in einer gelblich-grünen Farbe leuchten.


Fabian Zechmeister (links) und Maximilian Raab (rechts) demonstrieren die Fluoreszenz einer Perylenbisimidlösung

TU Wien

Neben der optisch sehr ansprechenden Farbe zeigen organische Moleküle, die unter Tageslicht gefärbt erscheinen, oft auch elektronische Eigenschaften. Dadurch sind sie vielversprechende Materialien für Anwendungen als organische Halbleiter, aber auch in LCD-Displays oder Solarzellen.

Komplizierte Herstellung anders gedacht

Dr. Miriam M. Unterlass vom Institut für Materialchemie der TU Wien und ihr Team haben in einer gerade veröffentlichten Studie über 20 verschiedene Farbstoffe hergestellt. Das ist an sich noch nicht besonders beeindruckend, die Herstellungsweise allerdings schon: Normalerweise verwendet man für die Herstellung von Perylenbisimiden äußerst giftige Lösungsmittel.

Außerdem benötigen konventionelle Methoden einen hohen Überschuss an Ausgangsstoffen, sowie den Einsatz teurer und giftiger chemischer Katalysatoren. Schließlich müssen die Endprodukte noch aufwendig gereinigt werden, um zu reinen Endprodukten zu kommen. Alles in allem ein sehr aufwändiger Prozess. „Wir setzen die entsprechenden Ausgangsmoleküle in einem Verhältnis von 1:1 ein, ohne jeglichen Überschuss also. Die Ausgangsstoffe werden dann in Wasser in einem geschlossenen Reaktor auf 200 °C erhitzt, wodurch erhöhter Druck entsteht“, erklärt Miriam Unterlass. „Im Grunde funktioniert der Reaktor wie ein Druckkochtopf.“

Solche Reaktionen in heißem Wasser unter Druck nennt man Hydrothermalsynthesen. Nach vollständiger Reaktion erhält man die fertigen Perylenbisimidfarbstoffe von hoher Reinheit – ganz ohne aufwendige Reinigungsverfahren. Für elektronische Anwendungen werden Perylenbisimide meist von Physikern und Ingenieuren implementiert, denen oft keine chemischen Laboratorien zur Verfügung stehen. Die neue, unkomplizierte hydrothermale Synthese erleichtert den Zugang zur Materialklasse der Perylenbisimide und ist daher ein wichtiger Schritt in Richtung Anwendbarkeit.

Von großen zu kleinen Molekülen

Vor kurzem wurde ein neues Herstellungsverfahren für Hochleistungspolymere (Link: http://www.tuwien.ac.at/aktuelles/news_detail/article/8695/) welches ebenfalls in heißem Wasser durchgeführt wird in der Arbeitsgruppe von Dr. Unterlass entwickelt. Mit der hydrothermalen Herstellung von Perylenbisimidfarbstoffen, konnte nun erstmals gezeigt werden, dass auch kleine organische Moleküle „im Druckkochtopf“ hergestellt werden können. Diese Reihenfolge der Entwicklungen ist eher unkonventionell.

Der übliche Weg wäre es, neue Synthesen zunächst für kleine Moleküle zu entwickeln, und die gewonnen Erkenntnisse dann später auf Polymere – also große Moleküle –umzulegen, denn im Normalfall sind kleine Moleküle einfacher herzustellen. Im Falle der Perylenbisimide stellte die hydrothermale Herstellung allerdings eine große Herausforderung dar.

Sie sind sehr apolar, mögen also kein Wasser – bei Raumtemperatur. Durch das Aufheizen des Wassers zu erhöhten Temperaturen kann diese Problematik erfolgreich umgangen werden. Dieser Prozess und die ressourcen- und umweltschonende Herstellungsmethode wurden nun im Fachjournal Chemical Communications publiziert.

Bilderdownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/farbstoffe/

Originalpublikation:
B. Baumgartner, A. Svirkova, J. Bintinger, C. Hametner, M. Marchetti-Deschmann and M. M. Unterlass: Green and highly efficient synthesis of perylene and naphthalene bisimides in nothing but water. Chem. Commun. 2017, 53, 1229-1232 | DOI: 10.1039/C6CC06567H http://pubs.rsc.org/en/content/articlelanding/2017/cc/c6cc06567h#!divAbstract
Webtipp: Homepage der Arbeitsgruppe Unterlass (http://www.unterlasslab.com/)

Rückfragehinweis:
Dr. Miriam M. Unterlass
Technische Universität Wien
Institut für Materialchemie
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165 206
miriam.unterlass@tuwien.ac.at

Materials & Matter ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien.
Geforscht wird von der Nanowelt bis hin zur Entwicklung neuer Werkstoffe für großvolumige Anwendungen. Die Forschenden arbeiten sowohl theoretisch, beispielsweise an mathematischen Modellen im Computer, wie auch experimentell an der Entwicklung und Erprobung innovativer Materialien.

TU Wien - Mitglied der TU Austria

www.tuaustria.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: LCD-Displays Materialchemie Moleküle Quantum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics