Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Fluoreszenz-Farbstoffe versagen

11.09.2012
Das Gas Stickstoffmonoxid spielt bei vielen Prozessen in Menschen, Tieren und Pflanzen eine wichtige Rolle. Doch die gängigste Methode, mit der Forschungslabore das Gas nachweisen, ist offenbar nicht immer zuverlässig.
Stickstoffmonoxid ist ein farb- und geruchloses Gas. Im Körper des Menschen wirkt es zum Beispiel an so grundlegenden Vorgängen wie der Regulierung des Blutdrucks und der Weiterleitung von Nervenimpulsen im Gehirn mit.

Die Rolle von Stickstoffmonoxid in Pflanzen wird seit Anfang der 1980er-Jahre erforscht. Dabei zeigt sich immer mehr, dass dieses Gas in die Riege der klassischen Pflanzenhormone einzureihen ist. In den Zellen selbst fungiert es als Botenstoff, der für die Bildung und Entwicklung der Wasserleitungsgefäße, für die Regulierung der Öffnungsweite von Spaltöffnungen und für andere Prozesse wichtig ist.

Wenn Forscher den Funktionen des Stickstoffmonoxids nachspüren, machen sie das Gas in der Regel mit speziellen Fluoreszenz-Farbstoffen sichtbar, mit so genannten Diaminofluoreszeinen (DAF). Mit diesen Farbstoffen ist auch eine mikroskopische Analyse von Pflanzengeweben möglich. Bislang vertraute man darauf, dass die Farbstoffe ausschließlich Stickstoffmonoxid nachweisen. Doch das ist nicht immer der Fall, wie die Arbeitsgruppe um den emeritierten Pflanzenphysiologen Professor Werner Kaiser von der Universität Würzburg nachgewiesen hat.

Bildung von Stickstoffmonoxid provoziert

Die Würzburger Botaniker haben im Labor eine Situation nachgeahmt, bei der nach gängiger Lehrmeinung unter anderem Stickstoffmonoxid entsteht: Eine Pflanze wird von einem Schadpilz befallen und produziert daraufhin unter anderem das stickstoffhaltige Gas, um den Angreifer zu schädigen. Die Forscher provozierten diese Reaktion, indem sie einer Suspension von Tabakzellen das Pilz-Protein Cryptogein hinzufügten, das die Verteidigungsreaktion auslöst.

Farbstoffe reagieren mit Wasserstoffperoxid

Aus früheren Untersuchungen wussten die Wissenschaftler: Die Fluoreszenz-Farbstoffe sprechen bei diesem Experiment an, doch eine andere, für Stickstoffmonoxid ebenfalls spezifische Nachweismethode eben nicht. Jetzt fanden sie heraus, warum das so ist: Die Farbstoffe reagieren in diesem Fall gar nicht mit Stickstoffmonoxid, sondern mit ebenfalls entstehendem Wasserstoffperoxid und Peroxidase-Enzymen zu fluoreszierenden Produkten – und sorgen damit für eine falsche Interpretation der Fluoreszenzdaten. Das berichten die Würzburger in der Fachzeitschrift „Nitric Oxide – Biology and Chemistry“.

„Möglicherweise müssen nun viele frühere Veröffentlichungen, die auf Messungen mit DAF-Fluoreszenzfarbstoffen basieren, unter einem neuen Licht gesehen werden“, sagt der Biologe Stefan Rümer. Denn eventuell wurde auch bei anderen Experimenten in Biologie und Medizin nicht Stickstoffmonoxid nachgewiesen, sondern Wasserstoffperoxid.

“DAF-fluorescence without NO: Elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol”, Stefan Rümer, Markus Krischke, Agnes Fekete, Martin J. Müller, Werner M. Kaiser. Nitric Oxide Biology and Chemistry, Volume 27, Issue 2, 15 August 2012, Seiten 123-135, DOI 10.1016/j.niox.2012.05.007

Kontakt

Stefan Rümer, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, T (0931) 31-83713, sruemer@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie