Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flügelschlag gegen Sturmböen

18.07.2016

Strömungsforscher gehen den Geheimnissen des Hummelfluges auf den Grund

Der Sommer ist da und bringt auch für die Bienen ein großes Nahrungsangebot. Sie setzen zu akrobatischen Flugkunststückchen an, fliegen wendig vorwärts, rückwärts, seitwärts, auf und ab, ändern ständig Richtung und Geschwindigkeit – und trotzen auch stärkeren Windturbulenzen.



Die digitale Hummel durchquert unterschiedliche Turbulenzen (türkis). An der Oberfläche ihrer Flügel entstehen Mini-Tornados (rosa), die eine Sogwirkung nach oben entfalten Lupe

© TU Berlin/FG Numerische Fluiddynamik

Der Anblick erfreut nicht nur Naturliebhaber, auch Ingenieure und Biologen widmen den Geheimnissen des Insektenflugs derzeit erhebliche Aufmerksamkeit. Das wachsende Interesse wird gespeist vom Trend zu immer stärkerer Miniaturisierung unbemannter Flugobjekte.

Wie gelingt diesen kleinen Lebewesen der tausendfache, kontrollierte Flügelschlag? Welche Turbulenzen erzeugen sie mit diesem Flügelschlag selbst, um die entstehenden Luftbewegungen zur Steuerung und Energieeinsparung auszunutzen und sie mit den vorhandenen Windbewegungen zu koordinieren?

Deutsche, französische und japanische Forscher haben nun in der bislang aufwendigsten Computersimulation über die kleinen Flugkünstler weitere Antworten gefunden. Beteiligt ist das TU-Institut für Strömungsmechanik und Technische Akustik.

„Es hat sich gezeigt, dass Hummeln und andere Insekten auch in stark turbulenten Strömungen die gleichen mittleren Kräfte produzieren wie in ungestörter Luft, anders als Flugzeuge, wo Turbulenz die Kräfte signifikant ändern kann“, erklärt Dr. Thomas Engels, Projektleiter am Fachgebiet Numerische Fluiddynamik, das von Prof. Dr. Jörn Sesterhenn geleitet wird. „Unsere Arbeit hat gezeigt, dass das Wirbelsystem, mit dem Insekten ihren Auf- und Vortrieb erzeugen, auch in starker Turbulenz stabil bleibt.“

Detaillierte Computersimulation zeigt Reaktion auf Turbulenzen

Alle kleinen Flugkörper, auch die menschengemachten, stehen vor der Herausforderung, draußen in einer instabilen Umgebung zu fliegen. Wissenschaftler suchen daher nach einer bio-inspirierten Alternative zum klassischen Flugzeug mit fixierten Flügeln und Rotoren. Der Nachbau von flatterfähigen Insektenflügeln wäre eine solche Alternative.

So versprechen sich die Wissenschaftler viel von den Erkenntnissen aus der Computersimulation, denn: „Es ist von großer Bedeutung, zu wissen, wo die Schwierigkeiten beim Fliegen in Turbulenz liegen und wie Insekten dieser Herausforderung begegnen“, so Thomas Engels. „Vor allem wollen wir anhand des Hummelfluges das Rätsel lösen, welche Turbulenzen Instabilitäten beim Flug auslösen und wie man sie kontrollieren kann. Hochgenaue numerische Simulationen stellen hierfür ein ideales Werkzeug dar. Sie ermöglichen einen sehr detaillierten Einblick unter genau kontrollierten Bedingungen.“

Die detaillierte Computersimulation hat schon jetzt erwiesen, dass Turbulenzen, also überraschend auftretende Verwirbelungen, eine andere Auswirkung auf flatternde Insekten haben als auf fest eingebaute und von Menschen designte Flugzeugflügel. Letztere sind aerodynamisch profiliert, sodass die Luft auf der Oberseite schneller strömt als auf der Unterseite. Die Flügel von Insekten hingegen sind flach und haben kein nennenswertes Profil.

Auf den schlagenden Flügeln bilden sich kleine Wirbel, sozusagen Mini-Tornados, die sich mit dem Flügel mitbewegen und den Druck auf seiner Oberseite senken, was den Auftrieb erhöht. Bei aerodynamischen Profilen, insbesondere bei kleinen Fliegern, rufen schon kleine turbulente Störungen signifikante Änderungen in den Auf- und Vortriebskräften hervor. Die Frage war nun, ob der Wirbel, den Insekten zum Fliegen benutzen, ebenso empfindlich reagieren kann.

„Unsere Simulationen zeigen, dass dies nicht der Fall ist“, so Thomas Engels. Diese Robustheit könne somit als ein weiterer Vorteil des Schlagfluges gesehen werden und gebe der Entwicklung insekteninspirierter bionischer Flugroboter weiteren Auftrieb. Gefördert wird das Projekt von der Deutschen Forschungsgemeinschaft und der Agence Nationale de la Recherche.

Thomas Engels hat sich bereits in seiner Dissertation mit den Fortbewegungsarten sowohl von Fischen im Wasser als auch von fliegenden Insekten befasst. Diese Tiere haben unterschiedlichste Methoden entwickelt, um Flüssigkeiten und Luft durch Bewegungen ihrer Extremitäten, ihrer Flossen und Flügel, sogar des ganzen Körpers so zu beeinflussen, dass die Umgebung ihre Fortbewegung unterstützt.

Zusammen mit Jörn Sesterhenn und drei weiteren Autoren veröffentlichte Thomas Engels die ersten Ergebnisse der Forschung in dem Artikel „Bumblebee Flights in Heavy Turbulence“ im „Physical Review Letter“ 116 (2016), 028103.

Fotomaterial zum Download: www.tu-berlin.de/?id=174973

Weitere Informationen erteilt Ihnen gern:
Thomas Engels, Ph. D.
TU Berlin
Institut für Strömungsmechanik und Technische Akustik
Fachgebiet Numerische Fluiddynamik
Tel.: 030/314-22849
E-Mail: engels@tnt.tu-berlin.de

Weitere Informationen:

http://www.tu-berlin.de/?id=174973

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie