Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flügelschlag gegen Sturmböen

18.07.2016

Strömungsforscher gehen den Geheimnissen des Hummelfluges auf den Grund

Der Sommer ist da und bringt auch für die Bienen ein großes Nahrungsangebot. Sie setzen zu akrobatischen Flugkunststückchen an, fliegen wendig vorwärts, rückwärts, seitwärts, auf und ab, ändern ständig Richtung und Geschwindigkeit – und trotzen auch stärkeren Windturbulenzen.



Die digitale Hummel durchquert unterschiedliche Turbulenzen (türkis). An der Oberfläche ihrer Flügel entstehen Mini-Tornados (rosa), die eine Sogwirkung nach oben entfalten Lupe

© TU Berlin/FG Numerische Fluiddynamik

Der Anblick erfreut nicht nur Naturliebhaber, auch Ingenieure und Biologen widmen den Geheimnissen des Insektenflugs derzeit erhebliche Aufmerksamkeit. Das wachsende Interesse wird gespeist vom Trend zu immer stärkerer Miniaturisierung unbemannter Flugobjekte.

Wie gelingt diesen kleinen Lebewesen der tausendfache, kontrollierte Flügelschlag? Welche Turbulenzen erzeugen sie mit diesem Flügelschlag selbst, um die entstehenden Luftbewegungen zur Steuerung und Energieeinsparung auszunutzen und sie mit den vorhandenen Windbewegungen zu koordinieren?

Deutsche, französische und japanische Forscher haben nun in der bislang aufwendigsten Computersimulation über die kleinen Flugkünstler weitere Antworten gefunden. Beteiligt ist das TU-Institut für Strömungsmechanik und Technische Akustik.

„Es hat sich gezeigt, dass Hummeln und andere Insekten auch in stark turbulenten Strömungen die gleichen mittleren Kräfte produzieren wie in ungestörter Luft, anders als Flugzeuge, wo Turbulenz die Kräfte signifikant ändern kann“, erklärt Dr. Thomas Engels, Projektleiter am Fachgebiet Numerische Fluiddynamik, das von Prof. Dr. Jörn Sesterhenn geleitet wird. „Unsere Arbeit hat gezeigt, dass das Wirbelsystem, mit dem Insekten ihren Auf- und Vortrieb erzeugen, auch in starker Turbulenz stabil bleibt.“

Detaillierte Computersimulation zeigt Reaktion auf Turbulenzen

Alle kleinen Flugkörper, auch die menschengemachten, stehen vor der Herausforderung, draußen in einer instabilen Umgebung zu fliegen. Wissenschaftler suchen daher nach einer bio-inspirierten Alternative zum klassischen Flugzeug mit fixierten Flügeln und Rotoren. Der Nachbau von flatterfähigen Insektenflügeln wäre eine solche Alternative.

So versprechen sich die Wissenschaftler viel von den Erkenntnissen aus der Computersimulation, denn: „Es ist von großer Bedeutung, zu wissen, wo die Schwierigkeiten beim Fliegen in Turbulenz liegen und wie Insekten dieser Herausforderung begegnen“, so Thomas Engels. „Vor allem wollen wir anhand des Hummelfluges das Rätsel lösen, welche Turbulenzen Instabilitäten beim Flug auslösen und wie man sie kontrollieren kann. Hochgenaue numerische Simulationen stellen hierfür ein ideales Werkzeug dar. Sie ermöglichen einen sehr detaillierten Einblick unter genau kontrollierten Bedingungen.“

Die detaillierte Computersimulation hat schon jetzt erwiesen, dass Turbulenzen, also überraschend auftretende Verwirbelungen, eine andere Auswirkung auf flatternde Insekten haben als auf fest eingebaute und von Menschen designte Flugzeugflügel. Letztere sind aerodynamisch profiliert, sodass die Luft auf der Oberseite schneller strömt als auf der Unterseite. Die Flügel von Insekten hingegen sind flach und haben kein nennenswertes Profil.

Auf den schlagenden Flügeln bilden sich kleine Wirbel, sozusagen Mini-Tornados, die sich mit dem Flügel mitbewegen und den Druck auf seiner Oberseite senken, was den Auftrieb erhöht. Bei aerodynamischen Profilen, insbesondere bei kleinen Fliegern, rufen schon kleine turbulente Störungen signifikante Änderungen in den Auf- und Vortriebskräften hervor. Die Frage war nun, ob der Wirbel, den Insekten zum Fliegen benutzen, ebenso empfindlich reagieren kann.

„Unsere Simulationen zeigen, dass dies nicht der Fall ist“, so Thomas Engels. Diese Robustheit könne somit als ein weiterer Vorteil des Schlagfluges gesehen werden und gebe der Entwicklung insekteninspirierter bionischer Flugroboter weiteren Auftrieb. Gefördert wird das Projekt von der Deutschen Forschungsgemeinschaft und der Agence Nationale de la Recherche.

Thomas Engels hat sich bereits in seiner Dissertation mit den Fortbewegungsarten sowohl von Fischen im Wasser als auch von fliegenden Insekten befasst. Diese Tiere haben unterschiedlichste Methoden entwickelt, um Flüssigkeiten und Luft durch Bewegungen ihrer Extremitäten, ihrer Flossen und Flügel, sogar des ganzen Körpers so zu beeinflussen, dass die Umgebung ihre Fortbewegung unterstützt.

Zusammen mit Jörn Sesterhenn und drei weiteren Autoren veröffentlichte Thomas Engels die ersten Ergebnisse der Forschung in dem Artikel „Bumblebee Flights in Heavy Turbulence“ im „Physical Review Letter“ 116 (2016), 028103.

Fotomaterial zum Download: www.tu-berlin.de/?id=174973

Weitere Informationen erteilt Ihnen gern:
Thomas Engels, Ph. D.
TU Berlin
Institut für Strömungsmechanik und Technische Akustik
Fachgebiet Numerische Fluiddynamik
Tel.: 030/314-22849
E-Mail: engels@tnt.tu-berlin.de

Weitere Informationen:

http://www.tu-berlin.de/?id=174973

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten