Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flippiger Lipid-Transport

13.08.2015

Einem Team von Forschern der ETH Zürich und der Universität Bern ist es gelungen, die Struktur eines speziellen Transport-Enzyms, einer Flippase des Bakteriums Campylobacter jejuni, aufzuklären. Die Struktur lieferte ihnen darüber hinaus eine Erklärung dafür, wie Flippasen bestimmte Lipide auf den Kopf stellen können.

Membranen spielen in der Biologie eine überaus wichtige Rolle: Sie trennen das Zellinnere vom extrazellulären Aussenraum ab, sie geben Zellen Form und Grösse. Und nicht zuletzt laufen an Oberflächen von Membranen unzählige lebenswichtige Prozesse und der Stoffaustausch ab.


Die Flippase PlgK bildet einen Tunnel (grün), in den es den hydrophilen Kopfteil (rot-grau) eines Lipid-gebundenen Oligosaccharids für dessen Umorientierung in der Membran aufnehmen kann. (Illustration: aus Perez et al, 2015)

Gebildet werden Membranen in der Regel durch eine Doppelschicht von Lipiden. Lipide haben einen «wasserliebenden» (hydrophilen) Kopf, an welchen zwei lange, wasserabstossende (hydrophobe) Kohlenwasserstoffketten gebunden sind. Bei einer Doppellipidschicht liegen die hydrophilen Köpfe der Lipide aussen, die hydrophoben Ketten sind einander zugewandt. In die Membran eingebettet sind zahlreiche weitere Bestandteile wie Poren bildende Proteine oder Transport-Enzyme.

Lipid-Transport essenziell

Der Transport von Phospholipiden sowie von Lipid-gebundenen Oligosacchariden (Lipid-linked Oligosaccharide, LLO) ist aufgrund der bipolaren Natur der Doppelmembran – hydrophobes Inneres, hydrophile Aussenhaut - energieabhängig und nur schwierig zu bewerkstelligen. Hier kommen sogenannte Flippasen zum Einsatz. Das sind Transportproteine, die über einen besonderen Flipp-Mechanismus Lipide von der einen auf die andere Seite der Membran bringen. Flippasen haben eine wichtige Rolle beim Aufrechterhalten der Asymmetrie von zellulären Membranen, also in der unterschiedlichen Lipid-Zusammensetzung der Innen- und Aussenseite.

Die asymmetrische Verteilung von Lipiden beeinflusst bei Säugern etwa die Blutgerinnung, die Immunerkennung oder den programmierten Zelltod, die Apoptose. Wissenschaftler vermuten, dass eine aus den Fugen geratene Lipid-Asymmetrie mit neurodegenerativen Krankheiten wie dem Alzheimer-Syndrom in Verbindung stehen könnte. Zudem spielen Flippasen eine essentielle Rolle im Transport von Lipid-gebundenen Oligosacchariden, die bei der Glykosylierung auf Proteine übertragen werden.

Flippase-Struktur erstmals aufgeklärt

Bislang kannten Biologen weder die genaue Struktur von Flippasen noch deren Mechanismus, wie sie die LLO umorientieren. Nun zeigt eine Forschungsgruppe von Wissenschaftlern der ETH Zürich und der Universität Bern, unter der Leitung von ETH-Professor Kaspar Locher, wie eine dieser Flippasen, die bakterielle «PglK», aufgebaut ist und wie sie funktioniert. PglK sitzt in der Membran des Bakteriums Campylobacter jejuni, einem Krankheitserreger des Menschen.

Um die molekulare Struktur von PglK zu bestimmten, isolierten die Forschenden diese Flippase aus Bakterienmembranen und «froren» die gefundenen Moleküle ein, indem sie diese kristallisierten. Die Kristalle wurden danach mittels Röntgenspektroskopie untersucht und die Positionen der Atome, aus welchen die Flippase besteht, mit hoher Auflösung bestimmt. So erhielten die Wissenschaftlerinnen und Wissenschaftler von drei verschiedenen Stadien dieses beweglichen Moleküls die räumliche Anordnung. Die Kenntnis der Stadien ermöglichte es ihnen schliesslich auch, einen molekularen Mechanismus abzuleiten, wie PglK LLOs umlagert.

So zeigen die Forschenden in ihrer Arbeit, die eben in der Fachzeitschrift Nature veröffentlicht wurde, dass PglK aus zwei identischen Untereinheiten besteht, die sich unter Energiezufuhr wie eine Schere bewegen. Der hydrophile Zuckerteil des Lipid-gebundenen Oligosaccharids wird dann wie einem Kreditkartenlesegerät durch einen ebenfalls hydrophilen Kanal von PglK gezogen. Der hydrophobe Lipid-Teil des Moleküls hingegen bleibt im hydrophoben Teil der Membran stecken. Dadurch ändert das LLO insgesamt seine Orientierung, der Zuckerteil kommt auf die Membranaussenseite zu liegen. Die Flippase ändert ihre Konformation während der Translokation des Oligosaccharids nicht. Erst wenn das LLO die Flippase verlassen hat, kehrt diese in den Ursprungszustand zurück.

Flippase-Mechanismus verstehen

Der nun gefundene Mechanismus unterscheidet sich grundlegend von bisher erforschten Transportprozessen, die über vergleichbare Transportkomplexe in Membranen ablaufen. «Das Flippen von Lipiden in Membranen hat Biochemiker und Zellbiologen seit jeher fasziniert; die biologische Lösung dieses Problems hat uns begeistert!» sagt Ko-Autor Markus Aebi, Professor für Mikrobiologie an der ETH Zürich.

Die Forschungsgruppen von ETH Zürich und Universität Bern sind die ersten, die dieses fundamentale biologische Rätsel, wie LLO geflippt wird, nun lösen konnten. Dazu haben sie ein neuartiges In-vitro-Modell entwickelt. ETH-Professor Aebi betont, dass es nur durch die Zusammenarbeit von Strukturbiologen, Chemikern und Mikrobiologen gelungen ist, diesen grundlegenden Mechanismus zu entschlüsseln: «Alle Gruppen haben ihre jeweilige Expertise auf ihrem Gebiet eingebracht. Nur so konnten wir diesen Erfolg erzielen.»

Nutzen für Therapeutika?

Die Arbeit sei reine Grundlagenforschung, obwohl es Erkrankungen gibt, die auf Mutationen in einer menschlichen Flippase zurückzuführen seien, so Aebi weiter. Diese Krankheiten gehören zur Klasse der «Congenital Disorders of Glycosylation». Beim Menschen sind über 10‘000 Glykosylierungsstellen in verschiedensten Proteinen bekannt, «deshalb wirken sich Veränderungen in der Glykosylierung, an der die Flippase grundlegend beteiligt ist, auf sehr viele Prozesse im Körper aus», sagt der ETH-Professor. Davon betroffen sei beispielsweise die Entwicklung und Reifung des Zentralnervensystems.

Ob sich das nun erarbeitete Wissen über die bakterielle Flippase PglK eines Tages anwenden lasse, sei zum heutigen Zeitpunkt unklar. Flippasen sind jedoch bereits heute Bestandteil von biotechnologischen Systemen zur Herstellung von Glykoproteinen die in der Diagnostik und als Therapeutika verwendet werden.

Literaturhinweis

Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond J-L, Locher KP. Molecular view of lipid-linked oligosaccharide translocation across biological membranes. Nature, Advanced online publication, 12th August 2015. DOI: 10.1038/nature14953

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/08/flippase-s...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz