Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flinke Vermittler im Gehirn

17.09.2009
Jede Reaktion, jeder Gedanke und jede Bewegung beruht auf der Weitergabe von Informationen zwischen Nervenzellen. Der gesamte Prozess der Signalübertragung ist äußerst schnell und dauert nur wenige 10.000stel Sekunden.

Eine der entscheidenden Grundlagen, die eine schnelle Signalübertragung erst möglich machen, haben nun Wissenschaftler vom Göttinger Max-Planck-Institut für biophysikalische Chemie gemeinsam mit ihren Kollegen an der Vrije Universiteit Amsterdam (Niederlande) aufgeklärt. (Cell, 27. August 2009; Neuron, 27. August 2009)

Nicht nur Organismen müssen miteinander kommunizieren, um zu überleben: Auch auf zellulärer Ebene ist der Austausch von Informationen lebenswichtig. Ob wir lernen, einen Ball zu fangen, schnell auf ein warnendes Geräusch oder eine Gefahr zu reagieren, oder ein Musikstück zu spielen - erst durch die schnelle und genaue zeitliche Abstimmung der Signalübertragung zwischen den Nervenzellen unseres Gehirns werden derart komplexe Leistungen möglich.

Nervenzellen nehmen Signale auf, verarbeiten sie und geben sie weiter. Gewöhnlich werden diese Signale über spezielle Botenstoffe übermittelt. Portionsweise verpackt liegen diese in kleine Membranbläschen - synaptische Vesikel - verpackt in der Zelle bereit. Zeigen Signale an, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran der "sendenden" Zelle. Sie entleeren dabei ihren Inhalt nach außen und lösen in der "empfangenden" Zelle ein Signal aus. Was diesen Prozess auslöst, ist seit langem bekannt: ein Anstieg der Kalziumionen-Konzentration in der Nervenendigung der sendenden Zelle. Membranbläschen sind aber weit mehr als Botenstoff-Behälter. Sie müssen Signale erkennen und Membranen verschmelzen. Hierbei spielen spezielle Proteine, die sogenannten SNAREs, eine wichtige Rolle.

Der gesamte Prozess der Signalübertragung im Gehirn ist äußerst schnell und dauert nur wenige 10.000stel Sekunden. Was die Informationsvermittlung im Gehirn derart schnell macht, haben Wissenschaftler um Jakob Sørensen vom Göttinger Max-Planck-Institut für biophysikalische Chemie und Matthijs Verhage von der Vrije Universiteit Amsterdam (Niederlande) untersucht.

Nicht alle Vesikel sind gleich

"Eine Nervenzelle enthält typischerweise bis zu mehrere hundert Botenstoff-Vesikel, aber nicht alle sind für eine Verschmelzung mit der Membran gleich gut präpariert", erklärt der Göttinger Neurobiologe Jakob Sørensen, der bis vor kurzem als Gruppenleiter in der Abteilung Membranbiophysik von Erwin Neher forschte. Vielmehr müssen die Vesikel erst einen mehrstufigen Reifungsprozess durchlaufen, um in einen verschmelzungsbereiten Zustand zu gelangen - die Grundlage für die schnelle Signalübertragung. Helferproteine positionieren dazu Vesikel in einem ersten Schritt so nahe wie möglich an die Zellmembran und heften sie dort an. Wissenschaftler bezeichnen diesen Prozess als "Docking". Doch welche Mechanismen dabei eine Rolle spielen, darüber war bisher erstaunlich wenig bekannt.

Dem deutsch-niederländischen Forscherteam ist es jetzt gelungen, die am Docking beteiligten Komponenten aufzuklären. Wie die Wissenschaftler herausfanden, besteht die minimale Docking-Maschinerie aus vier Proteinen. Eines dieser Proteine ist der Kalziumsensor Synaptotagmin-1, der in der Membran der Vesikel verankert ist. Der Kalziumsensor wurde bisher mit der kalziumabhängigen Verschmelzung von Vesikel und Zellmembran in Verbindung gebracht. "Dass der Kalziumsensor bereits beim Docking eine entscheidende Rolle spielt, hatten wir nicht erwartet", sagt Sørensen. Wie die Forscher zeigen konnten, heftet der Kalziumsensor das Vesikel an die Zellmembran an, indem es dort an zwei SNAREs (SNAP-25 und Syntaxin-1) bindet. Das vierte Protein, Munc18-1, wird für das Docking zwar nicht direkt benötigt, doch scheint es dabei eine wichtige "Überwacherfunktion" zu übernehmen. Wie die Ergebnisse der Forscher nahelegen, dient der Komplex aus den vier genannten Molekülen als molekulare Plattform, an die später ein weiteres Vesikelprotein (Synaptobrevin) andocken kann.

Multitasking-fähiger Sensor

Experimentelle Bestätigung für diese überraschende Funktion des Kalziumsensors beim Docking-Prozess erhielten jetzt die Forscherkollegen Samuel Young und Erwin Neher am Max-Planck-Institut für biophysikalische Chemie. "Wenn wir den Kalziumsensor an bestimmten Stellen veränderten, so konnten die Fusionskomplexe nicht mehr zusammengebaut werden", erklärt Young. Aber das Repertoire des Synaptotagmins als Kalziumsensor und "Heftklammer" scheint damit noch bei weitem nicht erschöpft. Wie die Göttinger Wissenschaftler herausfanden, sorgt der Kalziumsensor auch für die richtigen "Nachbarschaftsverhältnisse": Die SNARE-Fusionskomplexe werden in unmittelbarer Nähe zu den Quellen des Kalziumionensignals - den Kalziumionenkanälen - positioniert.

Kontaktfreudige SNAREs

Wenn eine erhöhte Kalziumkonzentration in der Nervenzelle schließlich das Signal gibt, wird der entstehende SNARE-Komplex vollständig ausgebildet. Dabei treten passende SNAREs miteinander in Kontakt, wodurch die Membranen einander so nahe kommen, dass sie schließlich verschmelzen. "Durch die stufenweise Ausbildung des Fusions-Komplexes muss bei einem Signal der Verschmelzungsprozess nur noch zu Ende geführt werden. Dies könnte erklären, warum er so extrem schnell verläuft", so Sørensen.

Originalveröffentlichungen:
Heidi de Wit, Alexander M. Walter, Ira Milosevic, Attila Gulyás-Kovács, Dietmar Riedel, Jakob B. Sørensen, Matthijs Verhage: Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935-946 (2009).

Samuel M. Young Jr., Erwin Neher: Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63, 482-496 (2009).

Kontakt:
Ansprechpartner:
Prof. Dr. Jakob B. Sørensen, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen
Tel.: +45 3532 -7931
E-Mail: jakobbs@sund.ku.dk
Dr. Samuel M. Young, Abteilung Membranbiophysik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1297
E-mail: syoung@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_21/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Möglicher Zell-Therapieansatz gegen Zytomegalie
22.02.2017 | Medizinische Hochschule Hannover

nachricht Erster Atemzug prägt Immunsystem nachhaltig
22.02.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften