Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flinke Vermittler im Gehirn

17.09.2009
Jede Reaktion, jeder Gedanke und jede Bewegung beruht auf der Weitergabe von Informationen zwischen Nervenzellen. Der gesamte Prozess der Signalübertragung ist äußerst schnell und dauert nur wenige 10.000stel Sekunden.

Eine der entscheidenden Grundlagen, die eine schnelle Signalübertragung erst möglich machen, haben nun Wissenschaftler vom Göttinger Max-Planck-Institut für biophysikalische Chemie gemeinsam mit ihren Kollegen an der Vrije Universiteit Amsterdam (Niederlande) aufgeklärt. (Cell, 27. August 2009; Neuron, 27. August 2009)

Nicht nur Organismen müssen miteinander kommunizieren, um zu überleben: Auch auf zellulärer Ebene ist der Austausch von Informationen lebenswichtig. Ob wir lernen, einen Ball zu fangen, schnell auf ein warnendes Geräusch oder eine Gefahr zu reagieren, oder ein Musikstück zu spielen - erst durch die schnelle und genaue zeitliche Abstimmung der Signalübertragung zwischen den Nervenzellen unseres Gehirns werden derart komplexe Leistungen möglich.

Nervenzellen nehmen Signale auf, verarbeiten sie und geben sie weiter. Gewöhnlich werden diese Signale über spezielle Botenstoffe übermittelt. Portionsweise verpackt liegen diese in kleine Membranbläschen - synaptische Vesikel - verpackt in der Zelle bereit. Zeigen Signale an, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran der "sendenden" Zelle. Sie entleeren dabei ihren Inhalt nach außen und lösen in der "empfangenden" Zelle ein Signal aus. Was diesen Prozess auslöst, ist seit langem bekannt: ein Anstieg der Kalziumionen-Konzentration in der Nervenendigung der sendenden Zelle. Membranbläschen sind aber weit mehr als Botenstoff-Behälter. Sie müssen Signale erkennen und Membranen verschmelzen. Hierbei spielen spezielle Proteine, die sogenannten SNAREs, eine wichtige Rolle.

Der gesamte Prozess der Signalübertragung im Gehirn ist äußerst schnell und dauert nur wenige 10.000stel Sekunden. Was die Informationsvermittlung im Gehirn derart schnell macht, haben Wissenschaftler um Jakob Sørensen vom Göttinger Max-Planck-Institut für biophysikalische Chemie und Matthijs Verhage von der Vrije Universiteit Amsterdam (Niederlande) untersucht.

Nicht alle Vesikel sind gleich

"Eine Nervenzelle enthält typischerweise bis zu mehrere hundert Botenstoff-Vesikel, aber nicht alle sind für eine Verschmelzung mit der Membran gleich gut präpariert", erklärt der Göttinger Neurobiologe Jakob Sørensen, der bis vor kurzem als Gruppenleiter in der Abteilung Membranbiophysik von Erwin Neher forschte. Vielmehr müssen die Vesikel erst einen mehrstufigen Reifungsprozess durchlaufen, um in einen verschmelzungsbereiten Zustand zu gelangen - die Grundlage für die schnelle Signalübertragung. Helferproteine positionieren dazu Vesikel in einem ersten Schritt so nahe wie möglich an die Zellmembran und heften sie dort an. Wissenschaftler bezeichnen diesen Prozess als "Docking". Doch welche Mechanismen dabei eine Rolle spielen, darüber war bisher erstaunlich wenig bekannt.

Dem deutsch-niederländischen Forscherteam ist es jetzt gelungen, die am Docking beteiligten Komponenten aufzuklären. Wie die Wissenschaftler herausfanden, besteht die minimale Docking-Maschinerie aus vier Proteinen. Eines dieser Proteine ist der Kalziumsensor Synaptotagmin-1, der in der Membran der Vesikel verankert ist. Der Kalziumsensor wurde bisher mit der kalziumabhängigen Verschmelzung von Vesikel und Zellmembran in Verbindung gebracht. "Dass der Kalziumsensor bereits beim Docking eine entscheidende Rolle spielt, hatten wir nicht erwartet", sagt Sørensen. Wie die Forscher zeigen konnten, heftet der Kalziumsensor das Vesikel an die Zellmembran an, indem es dort an zwei SNAREs (SNAP-25 und Syntaxin-1) bindet. Das vierte Protein, Munc18-1, wird für das Docking zwar nicht direkt benötigt, doch scheint es dabei eine wichtige "Überwacherfunktion" zu übernehmen. Wie die Ergebnisse der Forscher nahelegen, dient der Komplex aus den vier genannten Molekülen als molekulare Plattform, an die später ein weiteres Vesikelprotein (Synaptobrevin) andocken kann.

Multitasking-fähiger Sensor

Experimentelle Bestätigung für diese überraschende Funktion des Kalziumsensors beim Docking-Prozess erhielten jetzt die Forscherkollegen Samuel Young und Erwin Neher am Max-Planck-Institut für biophysikalische Chemie. "Wenn wir den Kalziumsensor an bestimmten Stellen veränderten, so konnten die Fusionskomplexe nicht mehr zusammengebaut werden", erklärt Young. Aber das Repertoire des Synaptotagmins als Kalziumsensor und "Heftklammer" scheint damit noch bei weitem nicht erschöpft. Wie die Göttinger Wissenschaftler herausfanden, sorgt der Kalziumsensor auch für die richtigen "Nachbarschaftsverhältnisse": Die SNARE-Fusionskomplexe werden in unmittelbarer Nähe zu den Quellen des Kalziumionensignals - den Kalziumionenkanälen - positioniert.

Kontaktfreudige SNAREs

Wenn eine erhöhte Kalziumkonzentration in der Nervenzelle schließlich das Signal gibt, wird der entstehende SNARE-Komplex vollständig ausgebildet. Dabei treten passende SNAREs miteinander in Kontakt, wodurch die Membranen einander so nahe kommen, dass sie schließlich verschmelzen. "Durch die stufenweise Ausbildung des Fusions-Komplexes muss bei einem Signal der Verschmelzungsprozess nur noch zu Ende geführt werden. Dies könnte erklären, warum er so extrem schnell verläuft", so Sørensen.

Originalveröffentlichungen:
Heidi de Wit, Alexander M. Walter, Ira Milosevic, Attila Gulyás-Kovács, Dietmar Riedel, Jakob B. Sørensen, Matthijs Verhage: Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935-946 (2009).

Samuel M. Young Jr., Erwin Neher: Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63, 482-496 (2009).

Kontakt:
Ansprechpartner:
Prof. Dr. Jakob B. Sørensen, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen
Tel.: +45 3532 -7931
E-Mail: jakobbs@sund.ku.dk
Dr. Samuel M. Young, Abteilung Membranbiophysik
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1297
E-mail: syoung@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_21/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics