Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flimmern in den Atemwegen erwünscht

05.06.2014

Das Innere unseres Körpers ist buchstäblich eine haarige Angelegenheit.

Mithilfe winziger Flimmerhärchen befreien Zellen unsere Atemwege von Staub, Schleim und Krankheitserregern oder bewegen sich Eizellen und Spermien vorwärts. Sind diese Härchen in ihrem Aufbau oder ihrer Funktion gestört, können Atemwegserkrankungen oder Unfruchtbarkeit die Folge sein.


Elektronenmikroskopische Aufnahme von Lungenzellen mit ihren charakteristischen beweglichen Flimmerhärchen (Bild: Max-Planck-Institut für biophysikalische Chemie)

Forscher am Max-Planck-Institut für biophysikalische Chemie haben mit Kollegen an der University of California in Berkeley und der Universität Göttingen nun entschlüsselt, wie die Verankerung der Flimmerhärchen an der Zelloberfläche gesteuert wird. Ihre Ergebnisse tragen dazu bei, die Ursachen von Atemwegserkrankungen besser zu verstehen.

Nur Bruchteile von Millimetern klein unterschätzt man Flimmerhärchen leicht in ihren Fähigkeiten. Doch wenn Hunderte von ihnen im Gleichklang peitschenartig schlagen, erzeugen sie eine kräftige Strömung, die unsere Atemwege reinigt und die Lunge schützt.

Eizellen aus dem Eierstock erreichen dank ihrer Hilfe die Gebärmutter. Nicht zuletzt geben Flimmerhärchen während der frühen Entwicklung des Embryos im Mutterleib die Richtung vor. Indem sie bestimmte Botenstoffe verteilen, sorgen die Härchen dafür, dass sich die Organe an der richtigen Stelle ausbilden. Ist dieser Prozess gestört, kann ein Situs inversus die Folge sein: Alle Organe liegen spiegelverkehrt im Körper.

Um nicht von der eigenen Schlagkraft mitgerissen zu werden, benötigen die agilen Flimmerhärchen allerdings eine gute Verankerung. Diese Aufgabe übernimmt der sogenannte Basalkörper. Diese Struktur aus verschiedenen Proteinen verbindet das Flimmerhärchen an seinem Fuß fest mit der Zelloberfläche.

Forscher am Max-Planck-Institut (MPI) für biophysikalische Chemie, der Universität Göttingen und der University of California in Berkely haben jetzt entdeckt, dass bei der Verankerung und Ausbildung der winzigen Härchen sechs kleine Nukleinsäure-Moleküle – sogenannte Mikro-RNAs – eine Schlüsselrolle spielen. Je zur Hälfte stammen sie aus den Genfamilien miR-34 und miR-449.

Zigarettenrauch beeinflusst Mikro-RNAs

In den „behaarten“ Zellen der Luftröhre und Lunge sind diese sechs Mikro-RNAs besonders aktiv. Zigarettenrauch beispielsweise reduziert ihre Menge maßgeblich und könnte eine der Ursachen für die bekannten Schädigungen der Atemwege bei Kettenrauchern sein. Um die Rolle der beiden Genfamilien in Zellen der Atemwege genauer zu untersuchen, schalteten die Wissenschaftler alle sechs Mikro-RNAs in Mäusen aus.

„Als Folge entwickelten die Nager Symptome, die auch Menschen mit einer seltenen Atemwegserkrankung namens Primäre Ziliäre Dyskinesie zeigen“, sagt Michael Kessel, Leiter der Forschungsgruppe Entwicklungsbiologie am MPI für biophysikalische Chemie.

Menschen, die an Primärer Ziliärer Dyskinesie (PCD) leiden, haben zu wenige oder verkürzte Flimmerhärchen. Als Folge leiden Betroffene unter immer wiederkehrenden Atemwegserkrankungen, und auch Unfruchtbarkeit ist verbreitet. Bei rund der Hälfte der PCD-Patienten sind zudem die Organe seitenverkehrt angelegt.

„Ein ganz ähnliches Krankheitsbild sehen wir bei Mäusen, denen alle sechs Mikro-RNAs fehlen. Auch diese Nager erkranken an den Atemwegen und sind zusätzlich unfruchtbar. Einen Situs inversus entwickeln sie dagegen nicht“, berichtet Kessel.

„Auch bei diesen Tieren sind die Flimmerhärchen auffällig verändert: Sie sind zu kurz, in ihrer Anzahl stark reduziert oder fehlen ganz.“ Offensichtlich haben die Mikro-RNAs eine wichtige Aufgabe bei der Ausbildung der Härchen. Doch welche ist das und wie funktioniert dies auf molekularer Ebene?

„Wie wir in unseren Experimenten zeigen konnten, schalten die Mikro-RNAs ein wichtiges Schalterprotein namens Cp110 aus. Ist Cp110 aktiv, blockiert es die Bildung der Flimmerhärchen und sorgt während der Embryonalentwicklung dafür, dass die Härchen erst genau zur richtigen Zeit am richtigen Ort entstehen.

Schalten die Mikro-RNAs das CP110 nicht rechtzeitigt aus, stoppt Cp110 das Härchenwachstum zu lange – mit fatalen Folgen. Die Basalkörper wandern nicht richtig und die Härchenbildung ist deutlich geschädigt“, schildert Alexander Klimke, wissenschaftlicher Mitarbeiter in der Forschungsgruppe von Michael Kessel.

„Unsere Vermutung war, dass die Mikro-RNAs gewissermaßen den Startschuss für die Flimmerhärchen-Bildung geben, indem sie das Cp110 abschalten“, ergänzt Forschungsgruppenleiter Kessel. Um ihre Annahme zu überprüfen, machten die Wissenschaftler das Kontrollexperiment: Sie schalteten nicht nur die sechs Mikro-RNAs, sondern auch den Cp110-Schalter ab.

„Wie wir erwartet hatten, fanden wir weitgehend funktionierende Flimmerhärchen. Die Basalkörper bildeten sich normal aus und positionierten sich richtig. Auch die Härchen waren unauffällig“, so Muriel Lizé, Dorothea Schlözer-Forschungsstipendiatin am Institut für Molekulare Onkologie an der Universität Göttingen.

„Die sechs Mikro-RNAs werden wie vermutet benötigt, um Cp110 zur rechten Zeit zu stoppen, damit sich die Flimmerhärchen entwickeln können.“ Da die sechs Mikro-RNAs in allen Wirbeltieren vorkommen, hofft das Forscherteam, dass der neu entdeckte Regulationsmechanismus dazu beiträgt, die molekulare Biologie der Flimmerhärchen und die Ursachen von Atemwegserkrankungen wie Primäre Ziliäre Dyskinesie oder andere chronische Lungenerkrankungen besser zu verstehen.

Originalpublikation
Rui Song, Peter Walentek, Nicole Sponer, Alexander Klimke, Joon Sub Lee, Gary Dixon, Richard Harland, Ying Wan, Polina Lishko, Muriel Lizé, Michael Kessel, Lin He: miR-34/449 miRNAs promote motile ciliogenesis through direct regulation of Cp110 in multiciliated airway cells. Nature 510, 115-120 (2014).

Kontakt
Prof. Dr. Michael Kessel, Forschungsgruppe Entwicklungsbiologie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1560
E-Mail: mkessel1@gwdg.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/14541735/pr_1413 - Original-Pressemitteilung mit druckfähigem Bildmaterial zum Herunterladen
http://www.mpibpc.mpg.de/de/kessel – Webseite der Forschungsgruppe Entwicklungsbiologie am Max-Planck-Institut für biophysikalische Chemie

Dr. Carmen Rotte | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten