Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der flexible Schweif des Prions vergiftet Hirnzellen

01.08.2013
Warum das veränderte Prion für Hirnzellen giftig ist, blieb jahrzehntelang ungelöst.

Nun zeigen Neuropathologen der Universität Zürich und des Universitätsspitals Zürich, dass der flexible Schweif des Prion-Proteins die Zelltötung auslöst. Die Ergebnisse haben weitreichende Konsequenzen: Für die Bekämpfung von Prion-Erkrankungen eignen sich nur jene Antikörper als potentielle Medikamente, die sich gegen den Schweif des Prions richten.

Prionen sind die infektiösen Erreger des Rinderwahnsinns und der Creutzfeldt-Jakob-Erkrankung. Sie entstehen, wenn sich ein normales Prion-Protein verformt und verklumpt. Das natürliche Prion-Protein ist harmlos und kommt in den meisten Organismen vor, beim Menschen in der Membran von Hirnzellen. Das abnormal verformte Prion ist hingegen giftig für die Hirnzellen.

Adriano Aguzzi, Professor für Neuropathologie an der Universität Zürich und am Universitätsspital Zürich, untersuchte über viele Jahre, warum diese Verformung giftig ist. Nun hat Aguzzis Team entdeckt, dass das Prion-Protein eine Art «Schalter» aufweist, der seine Toxizität steuert. Dieser Schalter bedeckt ein winziges Areal auf der Oberfläche des Proteins. Berührt ein anderes Molekül, beispielsweise ein Antikörper, diesen Schalter, wird ein fataler Mechanismus ausgelöst, der zum sehr schnellen Zelltod führt.

Flexibler Schweif führt Zelltötung aus

Die Wissenschaftler legen in der aktuellen Ausgabe von «Nature» dar, dass das Prion-Protein-Molekül aus zwei funktional unterschiedlichen Teilen besteht: einer globulären Domäne, die in der Zellmembran verankert ist sowie einem langen, unstrukturierten Schweif. Unter normalen Bedingungen ist dieser Schweif sehr wichtig, um die Funktion von Nervenzellen aufrechtzuerhalten. Bei einer Prion-Infektion hingegen interagiert das pathogene Prion-Protein mit dem globulären Teil und der Schweif verursacht die Zelltötung – so die Hypothese der Forscher.

Aguzzi und sein Team prüften dies, indem sie in Gewebeschnitten aus dem Kleinhirn von Mäusen mimetische Antikörper züchteten, die eine ähnliche Toxizität verursachten wie eine Prion-Infektion. Dabei stellten die Forscher fest, dass diese Antikörper den Schalter des Prion-Proteins erkannten. «Prion-Proteine ohne den langen Schweif können die Hirnzellen jedoch nicht mehr schädigen, selbst wenn ihr Schalter von Antikörpern erkannt worden ist», erklärt Adriano Aguzzi. «Dieser flexible Schweif ist für die Ausführung der Zelltötung verantwortlich.» Wird der Schweif mittels eines weiteren Antikörpers gebunden und unzugänglich gemacht, kann die Betätigung des Schalters ebenfalls keinen Zelltod mehr auslösen.

«Unsere Entdeckung hat weitreichende Konsequenzen für das Verständnis von Prion-Erkrankungen», so Aguzzi. Die Ergebnisse enthüllen, dass nur jene Antikörper, die sich gegen den Prion-Protein-Schweif richten, als potentielle Medikamente geeignet sind. Hingen sind Antikörper, die den Schalter des Prions erkennen, sehr schädlich und gefährlich.

Literatur:
Tiziana Sonati, Regina R. Reimann, Jeppe Falsig, Pravas Kumar Baral, Tracy O’Connor, Simone Hornemann, Sine Yaganoglu, Bei Li, Uli S. Herrmann, Barbara Wieland, Mridula Swayampakula, Muhammad Hafizur Rahman, Dipankar Das, Nat Kav, Roland Riek, Pawel P. Liberski, Michael N. G. James, and Adriano Aguzzi. The flexible tail of the prion protein mediates the toxicity of antiprion antibodies. Nature. July 31, 2013. Doi: 10.1038/nature12402
Kontakt:
Prof. Adriano Aguzzi
Institut für Neuropathologie
Universität Zürich
Tel. +41 44 255 21 07
E-Mail: adriano.aguzzi@usz.ch
Weitere Informationen:
http://www.mediadesk.uzh.ch/articles/2013/der-flexible-schweif-des-prions-vergiftet-hirnzellen.html

– Medienmitteilung der Universität Zürich in deutsch und mit Video

http://www.mediadesk.uzh.ch/articles/2013/der-flexible-schweif-des-prions-vergiftet-hirnzellen_en.html

– Medienmitteilung der Universität Zürich in englisch und mit Video

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.usz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten