Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fledermäuse verlassen sich auf ihre Ohren

02.11.2010
Fledermäuse interpretieren glatte, horizontale Flächen als Wasser, auch wenn andere Sinne signalisieren, dass es sich um Metall, Plastik oder Holz handelt.

Glatte Flächen reflektieren die Ultraschalllaute der Fledermäuse und wirken wie ein Spiegel. Da es in der Natur keine anderen ausgedehnten, glatten Flächen gibt, stellt diese Eigenschaft für Fledermäuse ein gutes Erkennungsmerkmal für Wasser dar.


Trinkendes Großes Mausohr (Myotis myotis).
Bild: Dietmar Nill

Wissenschaftler vom Max-Planck-Institut für Ornithologie in Seewiesen haben insgesamt 15 Arten aus drei großen Fledermausfamilien untersucht, die alle versucht haben, von den glatten Flächen zu trinken. Dabei haben sie auch festgestellt, dass die akustische Wahrnehmung von Wasser angeboren ist.

Wasser ist für alle Fledermäuse wichtig, denn sie müssen trinken. Viele Arten nutzen Flüsse, Teiche oder Seen aber auch zum Beutefang, denn Wasserinsekten sind weich und gut zu verdauen. Außerdem sind sie durch Ultraschalllaute gut wahrzunehmen, denn die Wasseroberfläche funktioniert wie ein Spiegel, der die Laute fast komplett wegreflektiert. Befindet sich aber ein Beutetier auf der Fläche, kommt von ihm ein Echo zurück.

Stefan Greif und Björn Siemers vom Max-Planck-Institut für Ornithologie haben in ihrer Studie Wasserflächen simuliert und den Fledermäusen in einem großen Flugraum je eine glatte und eine strukturierte Platte aus Metall, Holz oder Plastik angeboten. Unter schwacher Rotlichtbeleuchtung beobachteten die Forscher, ob die Fledermäuse auf die Täuschung hereinfallen und versuchen würden, von der glatten Platte zu trinken. Sie trauten dann kaum ihren Augen: „Die Langflügelfledermaus hat beispielsweise in zehn Minuten bis zu 100 Mal versucht, von der glatten Fläche zu trinken“, sagt Stefan Greif.

Auch bei drei weitere Arten, dem Großen Mausohr, der Großen Hufeisennase und dem Wasserspezialisten Wasserfledermaus erzielten die Wissenschaftler ähnliche Ergebnisse bei allen drei verwendeten Materialen. Nur bei Holz unternahmen die Tiere unwesentlich weniger Trinkversuche. Um zu testen, wie weit verbreitet dieses Verhalten ist, haben die Wissenschaftler aus Seewiesen anschließend je ein Tier von 11 weiteren Arten aus drei Fledermausfamilien getestet – ebenfalls mit positivem Ergebnis. Zumindest unter den insektenfressenden Fledermäusen ist dieses Verhalten also weit verbreitet.

Zur Verblüffung der Wissenschaftler lernen die Tiere nicht, dass diese akustischen Spiegel kein Wasser sind. Es gab sogar Tiere, die zufällig auf der glatten Fläche landeten, wieder aufflogen, und nach einigen Flugrunden einen neuen Trinkversuch starteten. Selbst als die Wissenschaftler die Platten auf einen Gartentisch legten, flogen die Tiere teilweise erst unten durch und versuchten dann oben zu trinken, obwohl das keiner natürlichen Situation entspricht.

Echoortung überstimmt andere Sinne
Die Information, dass eine glatte, horizontale Fläche Wasser bedeutet, scheint folglich im Fledermausgehirn fest verdrahtet zu sein. Doch wie werden die widersprüchlichen Sinneseindrücke dort verarbeitet? Die Metallplatte sieht ja nur in der Welt der Echoortung wie eine Wasserfläche aus, andere Sinnessysteme wie Sehsinn, Geruchsinn und Tastsinn vermitteln der Fledermaus ganz klar andere Informationen. Die Wissenschaftler wiederholten ihre Versuche im Dunkeln, der Sehsinn war also dieses Mal nicht verfügbar. Das Ergebnis: Die Anzahl der Trinkversuche stieg von 100 auf 160 Mal in zehn Minuten. „Die Fledermäuse scheinen also die Sinnesinformationen zu verrechnen und gegeneinander abzuwägen, wobei die Echoortung alle anderen dominiert“, erklärt Stefan Greif.

Zuletzt wollten die Wissenschaftler wissen, ob die akustische Information von Wasser den Tieren bereits in den Genen steckt. Dazu wiederholten sie die Versuche an Jungtieren, die noch nie mit einem See oder Fluss in Berührung gekommen waren. Flugunfähige Jungtiere wurden in einer Höhle mit ihren Müttern gefangen und von diesen in einem geschützten Raum weiter aufgezogen, bis sie fliegen konnten. Auch diese Tiere versuchten gleich beim ersten Kontakt von einer glatten Fläche zu trinken. Das Verhalten ist also nicht erlernt, sondern angeboren.

Nun mögen in der Natur alle glatten, horizontalen Flächen Wasserkörper sein, was aber ist mit den unzähligen menschgemachten glatten Flächen wie Dachfenster, Autodächer oder Wintergärten? Wenn die Fledermäuse so ausdauernd horizontale Spiegel für Wasser halten, versuchen sie dann auch, von diesen Flächen bis zur Entkräftung zu trinken? Diese Frage bleibt noch unbeantwortet. „Wir denken, dass die Fledermäuse draußen andere Möglichkeiten haben. Sie sind sehr ortstreu und haben vermutlich ihre etablierten Wasserflächen. Vielleicht probieren sie mal eine neue Fläche aus, ziehen dann aber weiter“, spekuliert Stefan Greif. Künftige Studien sind aber nötig, um das Vorkommen, das Ausmaß und die potenzielle ökologische Konsequenz eines solchen Szenarios abzuschätzen. [SP]

Originalveröffentlichung:
Stefan Greif & Björn Siemers
Innate recognition of water bodies in echolocating bats
Nature Communications. Veröffentlicht online am 02.11.2010
Kontakt:
Stefan Greif
Max-Planck-Institut für Ornithologie, Seewiesen
Forschungsgruppe Sinnesökologie
Tel. 08157 932 376
E-mail: greif@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut
Weitere Informationen:
http://www.orn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen