Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fledermäuse passen ihre Echoortungslaute an Lärm an

23.12.2015

Fledermäuse orientieren sich im Flug akustisch durch Echoortungslaute und nutzen diese auch meistens zur Nahrungssuche. Wie die Tiere mit Beeinträchtigungen durch Umgebungslärm umgehen, fand nun ein Team von Wissenschaftlern vom Max-Planck-Institut für Ornithologie Seewiesen und der Ludwig-Maximilians-Universität München heraus. Sie analysierten tausende von Echoortungsrufen unter verschiedenen, natürlichen Lärmbedingungen und zeigten, dass die Fledermäuse sowohl die Lautstärke ihrer Rufe wie auch deren Dauer an den Lärmpegel anpassen. Obwohl jedes Individuum dabei ein bisschen anders reagierte, verbessern alle Mechanismen die Erkennbarkeit des Signals.

Alle Fledermäuse nehmen ihre Umgebung durch Ultraschalllaute wahr, die sie aussenden und deren Echos sie auswerten. Viele Fledermäuse nutzen diese Laute auch zur Nahrungssuche, zum Beispiel solche, die Insekten im Flug jagen. Stark akustisch orientierte Tiere wie Fledermäuse brauchen also Mechanismen, um ihre Vokalisation auf Umgebungslärm anzupassen.


Die Kleine Lanzennase (Phyllostomus discolor) passt ihre Echoortungslaute an Umbebungslärm an

Pietro d' Amelio

Eine bereits recht gut untersuchte Form der lärmabhängigen Anpassung von akustischen Signalen ist der so genannte Lombard-Effekt: Als Antwort auf erhöhten Umgebungslärm wird die Lautstärke des Signals entsprechend angehoben. Dieser Grundeffekt zur Aufrechterhaltung von Kommunikation ist für Vögel und Säugetiere bekannt, einschließlich des Menschen.

Ein Team von Wissenschaftler aus Seewiesen unter Leitung von Lutz Wiegrebe von der Ludwig-Maximilians-Universität (LMU) München hat nun zum ersten Mal bei Fledermäusen Signallautstärke, Signaldauer und Signalwiederholung unter verschiedenen, kontrollierten Lärmbedingungen ausgewertet.

Die Wissenschaftler spielten der Kleinen Lanzennase (Phyllostomus discolor) Umgebungslärm in drei Frequenzbereichen in unterschiedlicher Lautstärke vor (28, 40 und 52 dB SPL) und nahmen dabei die Echoortungssignale der Tiere auf. Diese werteten sie anschließend mathematisch aus, um die akustische Wahrnehmung der Tiere zu verstehen.

Die Wissenschaftler fanden heraus, dass auch bei den Fledermäusen der wichtigste und stärkste Mechanismus zur Kompensation von Lärm die Lautstärke des Signals ist: Alle Tiere riefen lauter mit Lärm, und zwar um bis zu 8 dB. Die Dauer der Laute nahm zwischen 13 und 85 Prozent zu, dies führt laut den Wissenschaftlern ebenfalls zu einer besseren Erkennbarkeit des Signals um aber nur maximal 5 dB.

Ein weiterer Mechanismus der Lärmkompensation, den die Wissenschaftler unter bestimmten Lärmbedingungen gefunden haben, ist die Bildung von Lautgruppen. Damit könnte die Wahrscheinlichkeit steigen, durch das mehrmals hintereinander zeitnahe Hinhören den Informationsgehalt und damit die Erkennbarkeit des Signals zu verbessern. Die Wissenschaftler errechneten, dass dies bis zu 4 dB ausmachen kann.

„Wir fanden bei gleichen Lärmbedingungen Unterschiede in der Signallautstärke zwischen den Individuen von knapp zwei bis acht dB. Ebenso deutlich variierte die Veränderung der Rufdauer,“ zeigte sich Holger Holger Goerlitz, Forschungsgruppenleiter in Seewiesen überrascht. Entscheidend war, dass diese unterschiedlichen Reaktionen der Individuen jedoch in der Summe zum selben Ergebnis führten: „Das Gehör wertet verschiedene Signalparameter, wie zum Beispiel Lautstärke und Lautdauer, aus, um Signale zu erkennen“, sagt Lutz Wiegrebe von der LMU München. Obwohl die Parameter unterschiedlich sind, erhöhen sie in der Summe alle die Erkennbarkeit der Signale und unterstützen somit die Signalwahrnemung in Umgebungslärm.

Kontakt:
Dr. Holger Goerlitz
Max-Planck-Institut für Ornithologie Seewiesen
Forschungsgruppe Akustische und Funktionelle Ökologie
Tel.: +49 (0)8157 932-372
E-Mail: hgoerlitz@orn.mpg.de

Prof. Dr. Lutz Wiegrebe
Ludwig-Maximilians-Universität München
Neurobiologie, Abteilung Biologie II
Tel.: +49 (0)89 2180-74314
E-Mail: lutzw@lmu.de

Weitere Informationen:

http://www.nature.com/articles/srep18556

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Weitere Informationen:
http://www.orn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie