Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fledermäuse passen ihre Echoortungslaute an Lärm an

23.12.2015

Fledermäuse orientieren sich im Flug akustisch durch Echoortungslaute und nutzen diese auch meistens zur Nahrungssuche. Wie die Tiere mit Beeinträchtigungen durch Umgebungslärm umgehen, fand nun ein Team von Wissenschaftlern vom Max-Planck-Institut für Ornithologie Seewiesen und der Ludwig-Maximilians-Universität München heraus. Sie analysierten tausende von Echoortungsrufen unter verschiedenen, natürlichen Lärmbedingungen und zeigten, dass die Fledermäuse sowohl die Lautstärke ihrer Rufe wie auch deren Dauer an den Lärmpegel anpassen. Obwohl jedes Individuum dabei ein bisschen anders reagierte, verbessern alle Mechanismen die Erkennbarkeit des Signals.

Alle Fledermäuse nehmen ihre Umgebung durch Ultraschalllaute wahr, die sie aussenden und deren Echos sie auswerten. Viele Fledermäuse nutzen diese Laute auch zur Nahrungssuche, zum Beispiel solche, die Insekten im Flug jagen. Stark akustisch orientierte Tiere wie Fledermäuse brauchen also Mechanismen, um ihre Vokalisation auf Umgebungslärm anzupassen.


Die Kleine Lanzennase (Phyllostomus discolor) passt ihre Echoortungslaute an Umbebungslärm an

Pietro d' Amelio

Eine bereits recht gut untersuchte Form der lärmabhängigen Anpassung von akustischen Signalen ist der so genannte Lombard-Effekt: Als Antwort auf erhöhten Umgebungslärm wird die Lautstärke des Signals entsprechend angehoben. Dieser Grundeffekt zur Aufrechterhaltung von Kommunikation ist für Vögel und Säugetiere bekannt, einschließlich des Menschen.

Ein Team von Wissenschaftler aus Seewiesen unter Leitung von Lutz Wiegrebe von der Ludwig-Maximilians-Universität (LMU) München hat nun zum ersten Mal bei Fledermäusen Signallautstärke, Signaldauer und Signalwiederholung unter verschiedenen, kontrollierten Lärmbedingungen ausgewertet.

Die Wissenschaftler spielten der Kleinen Lanzennase (Phyllostomus discolor) Umgebungslärm in drei Frequenzbereichen in unterschiedlicher Lautstärke vor (28, 40 und 52 dB SPL) und nahmen dabei die Echoortungssignale der Tiere auf. Diese werteten sie anschließend mathematisch aus, um die akustische Wahrnehmung der Tiere zu verstehen.

Die Wissenschaftler fanden heraus, dass auch bei den Fledermäusen der wichtigste und stärkste Mechanismus zur Kompensation von Lärm die Lautstärke des Signals ist: Alle Tiere riefen lauter mit Lärm, und zwar um bis zu 8 dB. Die Dauer der Laute nahm zwischen 13 und 85 Prozent zu, dies führt laut den Wissenschaftlern ebenfalls zu einer besseren Erkennbarkeit des Signals um aber nur maximal 5 dB.

Ein weiterer Mechanismus der Lärmkompensation, den die Wissenschaftler unter bestimmten Lärmbedingungen gefunden haben, ist die Bildung von Lautgruppen. Damit könnte die Wahrscheinlichkeit steigen, durch das mehrmals hintereinander zeitnahe Hinhören den Informationsgehalt und damit die Erkennbarkeit des Signals zu verbessern. Die Wissenschaftler errechneten, dass dies bis zu 4 dB ausmachen kann.

„Wir fanden bei gleichen Lärmbedingungen Unterschiede in der Signallautstärke zwischen den Individuen von knapp zwei bis acht dB. Ebenso deutlich variierte die Veränderung der Rufdauer,“ zeigte sich Holger Holger Goerlitz, Forschungsgruppenleiter in Seewiesen überrascht. Entscheidend war, dass diese unterschiedlichen Reaktionen der Individuen jedoch in der Summe zum selben Ergebnis führten: „Das Gehör wertet verschiedene Signalparameter, wie zum Beispiel Lautstärke und Lautdauer, aus, um Signale zu erkennen“, sagt Lutz Wiegrebe von der LMU München. Obwohl die Parameter unterschiedlich sind, erhöhen sie in der Summe alle die Erkennbarkeit der Signale und unterstützen somit die Signalwahrnemung in Umgebungslärm.

Kontakt:
Dr. Holger Goerlitz
Max-Planck-Institut für Ornithologie Seewiesen
Forschungsgruppe Akustische und Funktionelle Ökologie
Tel.: +49 (0)8157 932-372
E-Mail: hgoerlitz@orn.mpg.de

Prof. Dr. Lutz Wiegrebe
Ludwig-Maximilians-Universität München
Neurobiologie, Abteilung Biologie II
Tel.: +49 (0)89 2180-74314
E-Mail: lutzw@lmu.de

Weitere Informationen:

http://www.nature.com/articles/srep18556

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Weitere Informationen:
http://www.orn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten