Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fledermäuse: Artenexplosion dank Beißkraft

23.11.2011
Die Entwicklung einer neuen Schädelform vor 15 Millionen Jahren führte bei Blattnasenfledermäusen zu einer größeren Beißkraft und damit zu einer großen Zahl neuer Arten.

Eines der größten Rätsel der Evolution ist, warum einige Gruppen von Organismen viele Arten umfassen, andere hingegen nur wenige. Amerikanische Wissenschaftler haben in Zusammenarbeit mit dem Berliner Leibniz-Institut für Zoo- und Wildtierforschung (IZW) die Evolution der Artbildung in der Familie der Blattnasenfledermäuse (Phyllostomidae) untersucht. Blattnasenfledermäuse stellen mit etwa 200 Arten eine der artenreichsten Säugetierfamilien dar, während die nächsten Verwandten nur ungefähr 10 Arten umfassen.


Blattnasenfledermäuse (Phyllostomidae)
Fotos: Dumont et al.

Die Studie der Wissenschaftler ergab, dass bei Blattnasenfledermäusen die Entstehung neuer Arten mit der Evolution einer neuen Schädelform einhergegangen sein muss. Für diese Studie untersuchten die Forscher um Dr. Elizabeth Dumont (University of Massachusetts, Amherst), Dr. Liliana Dávalos (Stony Brook University) und Dr. Christian Voigt vom Leibniz-Institut für Zoo- und Wildtierforschung (IZW) sowie Kollegen der University of California, Los Angeles die Beißkraft und Nahrungswahl freilebender Fledermäuse in den Tropen sowie deren Schädelstruktur an Museumsexemplaren.

In der aktuellen Ausgabe der Fachzeitschrift Proceedings of the Royal Society haben die Forscher eine Studie über den Zusammenhang zwischen Schädelstruktur und Artbildung veröffentlicht. Je nach Schädelform haben sich die Fledermäuse auf einen kleinen Kreis von Nahrungsquellen spezialisiert, so haben etwa nektartrinkende Fledermäuse lange schmale Schnauzen mit denen sie optimal in Blüten hineinreichen, wohingegen Fledermäuse, die sich vorwiegend von harten Früchten ernähren, über ein kurzes, mopsähnliches Gesicht verfügen. Blattnasenfledermäuse ernähren sich von Insekten, Nektar, Früchten, Fröschen, Eidechsen und sogar Blut.

Die Entwicklung breiterer Schädelformen vor etwa 15 Millionen Jahren ermöglichte es den Vorfahren dieser Fledermäuse, eine große Beißkraft anzuwenden und somit neue Nahrungsquellen zu erschließen. Diese Schlüsseltechnologie öffnete den Blattnasenfledermäusen den Zugang zu neuen Ressourcen wie zum Beispiel den Früchten. Dies ermöglichte eine schnelle und vielfältige Aufteilung in verschiedenste neue Fledermausarten. Ein interessanter Nebeneffekt ist, dass Samen vieler Pflanzenarten nun von Fledermäusen anstelle von Vögeln ausgebreitet werden.

Publikation:
The Royal Society Press / Proceedings of the Royal Society B: Biological Sciences

Ansprechpartner und Fotos

Leibniz-Institut für Zoo- und Wildtierforschung (IZW)
im Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
GERMANY
Dr. Christian Voigt (Wissenschaftler)
voigt@izw-berlin.de
Telefon 0049 (0)30 51 26 517
Steven Seet (Pressesprecher)
seet@izw-berlin.de
Telefon 0049 (0)30 51 68 108

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.izw-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit