Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fischgehirnzellen mit abnormer Chromosomenzahl entwickeln sich zu dauerhaft überlebensfähigen Neuronen

15.08.2008
Neurobiologische Überraschung

Günther Zupanc, Neurobiologe an der Jacobs University Bremen, konnte erstmals nachweisen, dass eine beträchtliche Abweichung von der für eine Tierart typischen Chromosomenzahl nicht unbedingt zu einem frühzeitig Absterben der Zellen, physiologischen Defekten, Verhaltensstörungen oder Tumoren führen muss.

Für seine Untersuchungen verwendete er den Messerfisch Apteronotus leptorhynchu, in dessen Gehirn etwa jede fünfte neu gebildete Zelle z. T. erhebliche Abweichungen in der Chromosomenzahl aufweist. Wie die Forschungsarbeiten zeigten, entwickelt sich von diesen Zellen eine große Anzahl zu Neuronen, die bis zum natürlichen Lebensende des Fisches erhalten bleiben. Die Studie ist in der aktuellen Ausgabe von Developmental Neurobiology (68: S. 1257-1268, 2008) veröffentlicht.

Bislang galt als gängige Lehrmeinung, dass jede Zelle eines Organismus die identische Erbinformation enthält, die auf einer arttypischen Anzahl von Chromosomen gespeichert ist. Als Ausnahmen galten Spermien und Eizellen, die je nur einen halben Chromosomensatz enthalten. Menschen beispielweise besitzen insgesamt 46 Chromosomen, 22 Paar autosomale Chromosomen und zwei Geschlechtschromosomen. Eine Abweichung von der arttypischen Anzahl, sogenannte "Aneuploidie", führt nach bisherigem Kenntnisstand entweder zum frühzeitigen Absterben der Zellen durch den sogenannten "programmierten Zelltod" oder ruft schwere Beeinträchtigungen hervor, etwa das Down-Syndrom beim Menschen oder bösartige Tumoren, deren Zellen ebenfalls fast immer durch eine merklichen Variationen der normalen Chromosomenzahl gekennzeichnet sind.

Günther Zupanc konnte nun zusammen mit seinem Team an der Jacobs University nachweisen, dass die Nervenzellen im Gehirn des Messerfisches Apteronotus leptorhynchus, die durch Fehler bei der mitotischen Zellteilung eine erhebliche Chromosomenvariabilität aufweisen, nur geringfügig häufiger durch programmierten Zelltod eliminiert werden, als Zellen mit "normaler" Chromosomenausstattung. Die Mehrzahl der Zellen mit abweichender Chromosomenzahl, die dem Zelltod während oder kurz nach der Zellteilung entgehen, überleben dauerhaft. Im Experiment konnte dies gezeigt werden, indem das Schicksal der Zellen über einen Zeitraum von bis zu 860 Tagen verfolgt wurde. Dies entspricht etwa der Hälfte der Gesamtlebenserwartung der untersuchten Fischart, die wie andere Knochenfische kontinuierlich neue Neuronen auch im ausgewachsenen Gehirn produzieren kann. Von den neuen Zellen mit abweichender Chromosomenzahl entwickeln sich etwa genauso viele zu Neuronen, wie von den Zellen mit normaler Chromosomenzahl.

"Dieses Ergebnis war eine große Überraschung für uns", kommentiert Günther Zupanc die Studie. Das anscheinend völlig normale Funktionieren von aneuploiden Nervenzellen während der gesamten Lebensspanne von Apteronotus leptorhynchus stütze die Vermutung, dass es sich bei der beobachteten Chromosomenzahlvariabilität um einen Regelmechanismus für Genaktivität handelt, der für einige, vielleicht sogar alle Organismen ein ganz normaler Teil ihrer Entwicklung sei, so der Neurobiologe weiter.

"Unsere Studie wirft daher wichtige Fragen auf: Ist Aneuploidie doch nicht, wie bisher von zahlreichen Wissenschaftlern angenommen, die Ursache für Krebs? Oder gibt es bei Fischen einen speziellen Mechanismus, durch den die aneuploiden Zellen vor ihrem normalen Schicksal, Tumorzellen zu werden, geschützt sind? Das letztere ist eine faszinierende Idee, da sie die Möglichkeit beinhaltet, eventuell neuartige Strategien zur Krebsbekämpfung entwickeln zu können", schlussfolgert der Wissenschaftler der Jacobs University.

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.jacobs-university.de/
http://www.jacobs-university.de/directory/02940/index.php

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops