Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fischembryonen besitzen Mechanismus zum Chemikalienschutz

03.09.2013
UFZ-Forscher entdecken Transportprotein im Embryo des Zebrabärblings

Forscher des Helmholtz-Zentrums für Umweltforschung (UFZ) haben gemeinsam mit Kollegen des Schweizer Wasserforschungsinstitutes Eawag, ein Protein entdeckt, das Chemikalien aus dem Embryo des Zebrabärblings heraustransportiert und ihn auf diese Weise vor giftigen Substanzen schützt.


Bilder von Embryonen des Zebrabärblins (Danio rerio), die die Funktion des Transportproteins Abcb4 als effektive Abwehr gegen die Aufnahme chemischer Verbindungen aus dem Wasser ins embryonale Gewebe illustrieren. Befindet sich im umgebenden Wasser der rote Fluoreszenzfarbstoff Rhodamin B, reichert sich bei normaler Funktion des Transportproteins nur eine geringe Menge des Farbstoffs in den Embryonen an (Embryo oben). Wird die Funktion des Transportproteins hingegen gehemmt, dringt vermehrt Farbstoff ins Gewebe ein, wie an den kräftiger rot angefärbten Geweben im unteren Embryo zu erkennen ist.
Quelle: Stephan Fischer/Eawag

Dieser Schutzmechanismuskann jedochdurch bestimmte Umweltchemikalien außer Kraft gesetzt werden, wodurch die Tiere gegenüber Giftstoffen sehr viel empfindlicher werden. Die im Wissenschaftsmagazin „BMC Biology" veröffentlichte Studie könnte für die Chemikalienbewertung zukünftig von großer Bedeutung sein.

Fische besitzen viele unterschiedliche Mechanismen, um sich vor schädlichen Substanzen in Gewässern zu schützen. Dazu gehören beispielsweise molekulare Transportsysteme, die ein Eindringen toxischer Substanzen in die Zelle verhindern. So genannte ABC-Transporter sind bei Säugetieren bereits gut untersucht. Über solche Transporter in Fischen oder deren Embryonen war bislang nur wenig bekannt.

Die beiden Ökotoxikologen Dr. Till Luckenbach (UFZ) und Dr. Stephan Fischer (Eawag) haben gemeinsam mit weiteren Kollegen nun herausgefunden, dass beim Embryo des Zebrabärblings (Danio rerio) das Transportprotein ABCB4 aktiv Chemikalien aus dem Embryo herausschleust. „Ein Fischembryo hat bereits sehr gute Schutzkompetenzen", sagt Luckenbach. „Die Bedeutung solcher Transportsysteme wurde in der toxikologischen und ökotoxikologischen Forschung bislang unterschätzt - sie spielen aber eine äußerst wichtige Rolle."

Bindet eine Substanz an das Transport-Protein ABCB4 des Fischembryos, wird der ebenfalls an den Transporter angelagerte Zelltreibstoff ATP gespalten. Die dabei freiwerdende Energie wird dazu genutzt, den unerwünschten Stoff aus der Zelle heraus zu schleusen. ABCB4 kann eine Vielzahl unterschiedlicher Stoffe abwehren, wodurch der Embryo resistent gegenüber einer Vielzahl von Schadstoffen wird. Beim Menschen übernimmt diese Funktion das Protein ABCB1. Überraschend war daher das Ergebnis der Studie, dass diese Aufgabe im Zebrabärbling das Transportprotein ABCB4 ausübt. ABCB4 beim Menschen kann dagegen keine toxischen Substanzen transportieren, sondern bindet spezifisch an bestimmte Fettsäuren der Leber, die in die Gallenkanäle geschleust werden, um die Leberzellen vor den aggressiven Gallensäuren zu schützen.

In Versuchen mit Embryonen des Zebrabärblings, in denen die Bildung von ABCB4 unterdrückt wurde, stellten Luckenbach und sein Team fest, dass diese sehr viel empfindlicher auf toxische Chemikalien reagierten, und sich bei ihnen mehr dieser Substanzen im Gewebe anreicherten. „Daraus konnten wir schließen, dass ABCB4 beim Zebrabärbling tatsächlich ein Transportprotein ist, das den Embryo vor Chemikalienbelastung schützt", sagt Luckenbach.

In weiterführenden Untersuchungen konnten die Forscher durch Messung der Aktivität des Transportersystems herausfinden, welche Chemikalien durch ABCB4 transportiert werden. Es gibt aber auch Substanzen, die den Transporter blockieren können. Durch diese Hemmung kann er seiner Funktion nicht nachkommen, und andere schädliche Substanzen können in den Organismus eindringen. „Stoffe, die den Transporter hemmen, öffnen anderen toxischen Substanzen Tür und Tor", sagt Stephan Fischer. „Sie werden auch Chemosensitizer genannt, da sie den Organismus für Schadstoffe empfindlicher machen. Dieser indirekte toxische Effekt spielt vor allem bei Stoffgemischen, wie sie üblicherweise in unserer Umwelt vorkommen, eine wichtige Rolle."

Am UFZ werden derzeit verschiedenste umweltrelevante Chemikalien auf deren Einfluss auf das ABCB4-Transportersystem getestet - einzeln und im Gemisch. Luckenbach: „Viele Effekte von Stoffgemischen können mit der ABCB4-Proteinaktivität erklärt werden. Da Embryonen des Zebrabärblings für die Chemikalienbewertung und für Untersuchungen von Umweltbelastungen genutzt werden, hoffen wir, dass unsere Studie dazu beitragen wird, dass in Zukunft unbedingt auch Tests zu ABCB4-Transportprozessen in die Richtlinien von Toxizitätstests aufgenommen werden." Nicole Silbermann

Publikation:
Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos
Stephan Fischer, Nils Klüver, Kathleen Burkhardt-Medicke, Mirko Pietsch, Anne-Marie Schmidt, Peggy Wellner, Kristin Schirmer and Till Luckenbach
BMC Biology 2013, 11:69doi:10.1186/1741-7007-11-69
http://www.biomedcentral.com/1741-7007/11/69
Die Untersuchungen wurden von der Deutschen Forschungsgemeinschaft (DFG), dem Sächsischen Staatsministerium für Umwelt und Landwirtschaft und der Deutschen Bundesstiftung Umwelt (DBU) gefördert.

Weitere Informationen:
Dr. Till Luckenbach
Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: 0341-235-1514
http://www.ufz.de/index.php?de=15560
Dr. Stephan Fischer
Eawag / Wasserforschungs-Institut des ETH-Bereichs (Schweiz)
Telefon: +41 (0)58 765 55 67
http://www.eawag.ch/about/personen/homepages/fischest/index
oder über
Tilo Arnhold / Susanne Hufe (UFZ-Pressestelle)
Telefon: 0341-235-1635, -1630
http://www.ufz.de/index.php?de=640
Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg mehr als 1.100 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.

http://www.ufz.de/

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit fast 34.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,8 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

http://www.helmholtz.de/

Nicole Silbermann/Tilo Arnhold | UFZ News
Weitere Informationen:
http://www.ufz.de/index.php?de=31974

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie