Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische ohne Flossen – Fehler im Zelltransport hat fatale Folgen

25.10.2013
Die Erforschung des Vesikeltransports in Zellen wurde in diesem Jahr mit dem Nobelpreis belohnt – Berliner Forscher zeigen nun, dass dieser Transportmechanismus auch über die Aktivierung von Genen entscheidet. Die Vesikel spielen so bei der Embryonalentwicklung und auch bei der Entstehung aggressiver Krebserkrankungen eine entscheidende Rolle.

Ohne AP-1 kann kein lebensfähiges Wirbeltier entstehen – ist eines der Gene für das Protein ausgeschaltet, entwickeln sich beispielsweise Mäuse nicht über das frühe Embryonalstadium hinaus.


Obereres Bild: Zebrafischembryo mit Brustflossen. Unteres Bild: Zebrafischembryo, bei dem der AP-1-Enzym-Komplex ausgeschaltet wurde, ohne Brustflossen.

Autor: Marnix Wieffer

Die Gruppe um Volker Haucke am Leibniz-Institut für Molekulare Pharmakologie (FMP) hat nun aufgeklärt, welche Rolle AP-1 zusammen mit einem assoziierten Enzym im Inneren der Zelle spielt: Es dient als Sortiersignal für Membranvesikel im Inneren der Zelle, und das hat weitreichende Folgen.

Zunächst konnten die FMP-Forscher durch hochauflösende Fluoreszenzaufnahmen zeigen, dass AP-1 als Teil eines Proteinkomplexes durch die Zelle wandert. Durch die Katalyse eines bestimmten Enzyms (PI4-Kinase vom Typ 2β) wird es zusammen mit diesem Enzym an Membranvesikel gebunden. Solche Vesikel schnüren sich an der Membran des Trans-Golgi Netzwerkes ein und bewegen sich durch das Innere der Zelle: Wie auf einem Rangierbahnhof werden so beständig Stoffe aufgenommen, zu zellulären Mülldeponien weitergereicht, oder auch recycelt und so zur Außenmembran zurücktransportiert. Für die Aufklärung dieser Transportwege wurde 2013 der Nobelpreis für Medizin verliehen.

Wie aber kann der Vesikeltransport über die Aktivierung von Genen im Zellkern entscheiden? Auf die richtige Spur kamen die FMP-Forscher, als sie den AP-1-Enzym-Komplex in Zebrafischen ausschalteten.

„Bei den nur wenige Tage alten Embryonen der Fische wuchsen daraufhin keine Brustflossen – das ist mit Menschen vergleichbar, denen die Arme fehlen“, erklärt Volker Haucke. Über die Entstehung von Brustflossen aber sind bereits viele Details bekannt: Sie entwickeln sich aus frühen knospenförmigen Strukturen, wenn darin zum richtigen Zeitpunkt Zellen durch ein bestimmtes, Signal, das WNT-Molekül aktiviert werden.

Der WNT-Signalweg ist ein altes Entwicklungsprogramm, das früh in der Evolution entstand und in allen Wirbeltieren, so auch im Menschen wirkt. Das WNT-Molekül bindet dabei an einen Rezeptor, der aus der Zelle herausragt. Dadurch wird im Zellinneren eine Signalkette in Gang gesetzt, die kaskadenartig Gene im Zellkern anschaltet, die über die weitere Entwicklung entscheiden. Dabei wird der WNT-Rezeptor als Teil eines Vesikels ins Zellinnere geschleust, und hier kommt es zu einer wichtigen Weichenstellung: Bindet der AP-1-Komplex an das Vesikel, dann wandert dieses zurück zur Außenmembran. Der Rezeptor ragt nun wieder aus der Zelle heraus und kann aufs Neue aktiviert werden. Fehlt aber der Weichensteller AP-1, dann wandert das Vesikel mitsamt Rezeptor auf eine Art Mülldeponie. Er wird dann im Inneren der Zelle verdaut – mit tödlichen Folgen für die Entwicklung des Embryos.

„Wir haben erstmals gezeigt, wie der WNT-Signalweg durch den Vesikeltransport reguliert wird“, freut sich FMP-Direktor Volker Haucke.

Zugleich ist die Entdeckung medizinisch relevant: Bei verschiedenen Krebserkrankungen, zum Beispiel Brust- und Darmkrebs, ist der WNT-Signalweg im erwachsenen Menschen fälschlicherweise aktiv. Krebsgeschwüre mit WNT-Aktivierung sind dabei oft besonders aggressiv und schwer therapierbar. Der AP-1-Komplex und das diesen regulierende Enzym, ohne den der WNT-Signalweg nicht funktioniert, könnten daher Ansätze für die Entwicklung künftiger Therapien sein.

Current Biology 23, 1–6, November 4, 2013

Leibniz-Institut für Molekulare Pharmakologie (FMP)
Ob Kopfschmerzen, Bluthochdruck oder Infektionen – bei vielen Beschwerden helfen heute einfache Tabletten. Doch für etliche Krankheiten gibt es immer noch keine Heilung. Neue Medikamente waren früher meist glückliche Zufallsfunde. Inzwischen wollen Wissenschaftler aber herausfinden, was bei Krankheiten im Körper eigentlich schiefläuft und gezielt Wirkstoffe dafür entwickeln. Das FMP erforscht dafür die wichtigsten Bausteine der Körperzellen, die Proteine (Eiweißstoffe). Dabei handelt es sich um unendlich wandelbare Moleküle – sie katalysieren Reaktionen, übermitteln Signale und bilden das Grundgerüst des Lebens. Mit den unterschiedlichsten Methoden erforschen die Wissenschaftler am FMP die Form der Protein-Moleküle, wie sie funktionieren und mit welchen Wirkstoffen man sie beeinflussen kann. Daraus wird einmal die Medizin der Zukunft. Das FMP ist ein Institut der Leibniz-Gemeinschaft und des Forschungsverbunds Berlin.

Silke Oßwald | Leibniz-Institut FMP
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics