Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische ohne Flossen – Fehler im Zelltransport hat fatale Folgen

25.10.2013
Die Erforschung des Vesikeltransports in Zellen wurde in diesem Jahr mit dem Nobelpreis belohnt – Berliner Forscher zeigen nun, dass dieser Transportmechanismus auch über die Aktivierung von Genen entscheidet. Die Vesikel spielen so bei der Embryonalentwicklung und auch bei der Entstehung aggressiver Krebserkrankungen eine entscheidende Rolle.

Ohne AP-1 kann kein lebensfähiges Wirbeltier entstehen – ist eines der Gene für das Protein ausgeschaltet, entwickeln sich beispielsweise Mäuse nicht über das frühe Embryonalstadium hinaus.


Obereres Bild: Zebrafischembryo mit Brustflossen. Unteres Bild: Zebrafischembryo, bei dem der AP-1-Enzym-Komplex ausgeschaltet wurde, ohne Brustflossen.

Autor: Marnix Wieffer

Die Gruppe um Volker Haucke am Leibniz-Institut für Molekulare Pharmakologie (FMP) hat nun aufgeklärt, welche Rolle AP-1 zusammen mit einem assoziierten Enzym im Inneren der Zelle spielt: Es dient als Sortiersignal für Membranvesikel im Inneren der Zelle, und das hat weitreichende Folgen.

Zunächst konnten die FMP-Forscher durch hochauflösende Fluoreszenzaufnahmen zeigen, dass AP-1 als Teil eines Proteinkomplexes durch die Zelle wandert. Durch die Katalyse eines bestimmten Enzyms (PI4-Kinase vom Typ 2β) wird es zusammen mit diesem Enzym an Membranvesikel gebunden. Solche Vesikel schnüren sich an der Membran des Trans-Golgi Netzwerkes ein und bewegen sich durch das Innere der Zelle: Wie auf einem Rangierbahnhof werden so beständig Stoffe aufgenommen, zu zellulären Mülldeponien weitergereicht, oder auch recycelt und so zur Außenmembran zurücktransportiert. Für die Aufklärung dieser Transportwege wurde 2013 der Nobelpreis für Medizin verliehen.

Wie aber kann der Vesikeltransport über die Aktivierung von Genen im Zellkern entscheiden? Auf die richtige Spur kamen die FMP-Forscher, als sie den AP-1-Enzym-Komplex in Zebrafischen ausschalteten.

„Bei den nur wenige Tage alten Embryonen der Fische wuchsen daraufhin keine Brustflossen – das ist mit Menschen vergleichbar, denen die Arme fehlen“, erklärt Volker Haucke. Über die Entstehung von Brustflossen aber sind bereits viele Details bekannt: Sie entwickeln sich aus frühen knospenförmigen Strukturen, wenn darin zum richtigen Zeitpunkt Zellen durch ein bestimmtes, Signal, das WNT-Molekül aktiviert werden.

Der WNT-Signalweg ist ein altes Entwicklungsprogramm, das früh in der Evolution entstand und in allen Wirbeltieren, so auch im Menschen wirkt. Das WNT-Molekül bindet dabei an einen Rezeptor, der aus der Zelle herausragt. Dadurch wird im Zellinneren eine Signalkette in Gang gesetzt, die kaskadenartig Gene im Zellkern anschaltet, die über die weitere Entwicklung entscheiden. Dabei wird der WNT-Rezeptor als Teil eines Vesikels ins Zellinnere geschleust, und hier kommt es zu einer wichtigen Weichenstellung: Bindet der AP-1-Komplex an das Vesikel, dann wandert dieses zurück zur Außenmembran. Der Rezeptor ragt nun wieder aus der Zelle heraus und kann aufs Neue aktiviert werden. Fehlt aber der Weichensteller AP-1, dann wandert das Vesikel mitsamt Rezeptor auf eine Art Mülldeponie. Er wird dann im Inneren der Zelle verdaut – mit tödlichen Folgen für die Entwicklung des Embryos.

„Wir haben erstmals gezeigt, wie der WNT-Signalweg durch den Vesikeltransport reguliert wird“, freut sich FMP-Direktor Volker Haucke.

Zugleich ist die Entdeckung medizinisch relevant: Bei verschiedenen Krebserkrankungen, zum Beispiel Brust- und Darmkrebs, ist der WNT-Signalweg im erwachsenen Menschen fälschlicherweise aktiv. Krebsgeschwüre mit WNT-Aktivierung sind dabei oft besonders aggressiv und schwer therapierbar. Der AP-1-Komplex und das diesen regulierende Enzym, ohne den der WNT-Signalweg nicht funktioniert, könnten daher Ansätze für die Entwicklung künftiger Therapien sein.

Current Biology 23, 1–6, November 4, 2013

Leibniz-Institut für Molekulare Pharmakologie (FMP)
Ob Kopfschmerzen, Bluthochdruck oder Infektionen – bei vielen Beschwerden helfen heute einfache Tabletten. Doch für etliche Krankheiten gibt es immer noch keine Heilung. Neue Medikamente waren früher meist glückliche Zufallsfunde. Inzwischen wollen Wissenschaftler aber herausfinden, was bei Krankheiten im Körper eigentlich schiefläuft und gezielt Wirkstoffe dafür entwickeln. Das FMP erforscht dafür die wichtigsten Bausteine der Körperzellen, die Proteine (Eiweißstoffe). Dabei handelt es sich um unendlich wandelbare Moleküle – sie katalysieren Reaktionen, übermitteln Signale und bilden das Grundgerüst des Lebens. Mit den unterschiedlichsten Methoden erforschen die Wissenschaftler am FMP die Form der Protein-Moleküle, wie sie funktionieren und mit welchen Wirkstoffen man sie beeinflussen kann. Daraus wird einmal die Medizin der Zukunft. Das FMP ist ein Institut der Leibniz-Gemeinschaft und des Forschungsverbunds Berlin.

Silke Oßwald | Leibniz-Institut FMP
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie