Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische ohne Flossen – Fehler im Zelltransport hat fatale Folgen

25.10.2013
Die Erforschung des Vesikeltransports in Zellen wurde in diesem Jahr mit dem Nobelpreis belohnt – Berliner Forscher zeigen nun, dass dieser Transportmechanismus auch über die Aktivierung von Genen entscheidet. Die Vesikel spielen so bei der Embryonalentwicklung und auch bei der Entstehung aggressiver Krebserkrankungen eine entscheidende Rolle.

Ohne AP-1 kann kein lebensfähiges Wirbeltier entstehen – ist eines der Gene für das Protein ausgeschaltet, entwickeln sich beispielsweise Mäuse nicht über das frühe Embryonalstadium hinaus.


Obereres Bild: Zebrafischembryo mit Brustflossen. Unteres Bild: Zebrafischembryo, bei dem der AP-1-Enzym-Komplex ausgeschaltet wurde, ohne Brustflossen.

Autor: Marnix Wieffer

Die Gruppe um Volker Haucke am Leibniz-Institut für Molekulare Pharmakologie (FMP) hat nun aufgeklärt, welche Rolle AP-1 zusammen mit einem assoziierten Enzym im Inneren der Zelle spielt: Es dient als Sortiersignal für Membranvesikel im Inneren der Zelle, und das hat weitreichende Folgen.

Zunächst konnten die FMP-Forscher durch hochauflösende Fluoreszenzaufnahmen zeigen, dass AP-1 als Teil eines Proteinkomplexes durch die Zelle wandert. Durch die Katalyse eines bestimmten Enzyms (PI4-Kinase vom Typ 2β) wird es zusammen mit diesem Enzym an Membranvesikel gebunden. Solche Vesikel schnüren sich an der Membran des Trans-Golgi Netzwerkes ein und bewegen sich durch das Innere der Zelle: Wie auf einem Rangierbahnhof werden so beständig Stoffe aufgenommen, zu zellulären Mülldeponien weitergereicht, oder auch recycelt und so zur Außenmembran zurücktransportiert. Für die Aufklärung dieser Transportwege wurde 2013 der Nobelpreis für Medizin verliehen.

Wie aber kann der Vesikeltransport über die Aktivierung von Genen im Zellkern entscheiden? Auf die richtige Spur kamen die FMP-Forscher, als sie den AP-1-Enzym-Komplex in Zebrafischen ausschalteten.

„Bei den nur wenige Tage alten Embryonen der Fische wuchsen daraufhin keine Brustflossen – das ist mit Menschen vergleichbar, denen die Arme fehlen“, erklärt Volker Haucke. Über die Entstehung von Brustflossen aber sind bereits viele Details bekannt: Sie entwickeln sich aus frühen knospenförmigen Strukturen, wenn darin zum richtigen Zeitpunkt Zellen durch ein bestimmtes, Signal, das WNT-Molekül aktiviert werden.

Der WNT-Signalweg ist ein altes Entwicklungsprogramm, das früh in der Evolution entstand und in allen Wirbeltieren, so auch im Menschen wirkt. Das WNT-Molekül bindet dabei an einen Rezeptor, der aus der Zelle herausragt. Dadurch wird im Zellinneren eine Signalkette in Gang gesetzt, die kaskadenartig Gene im Zellkern anschaltet, die über die weitere Entwicklung entscheiden. Dabei wird der WNT-Rezeptor als Teil eines Vesikels ins Zellinnere geschleust, und hier kommt es zu einer wichtigen Weichenstellung: Bindet der AP-1-Komplex an das Vesikel, dann wandert dieses zurück zur Außenmembran. Der Rezeptor ragt nun wieder aus der Zelle heraus und kann aufs Neue aktiviert werden. Fehlt aber der Weichensteller AP-1, dann wandert das Vesikel mitsamt Rezeptor auf eine Art Mülldeponie. Er wird dann im Inneren der Zelle verdaut – mit tödlichen Folgen für die Entwicklung des Embryos.

„Wir haben erstmals gezeigt, wie der WNT-Signalweg durch den Vesikeltransport reguliert wird“, freut sich FMP-Direktor Volker Haucke.

Zugleich ist die Entdeckung medizinisch relevant: Bei verschiedenen Krebserkrankungen, zum Beispiel Brust- und Darmkrebs, ist der WNT-Signalweg im erwachsenen Menschen fälschlicherweise aktiv. Krebsgeschwüre mit WNT-Aktivierung sind dabei oft besonders aggressiv und schwer therapierbar. Der AP-1-Komplex und das diesen regulierende Enzym, ohne den der WNT-Signalweg nicht funktioniert, könnten daher Ansätze für die Entwicklung künftiger Therapien sein.

Current Biology 23, 1–6, November 4, 2013

Leibniz-Institut für Molekulare Pharmakologie (FMP)
Ob Kopfschmerzen, Bluthochdruck oder Infektionen – bei vielen Beschwerden helfen heute einfache Tabletten. Doch für etliche Krankheiten gibt es immer noch keine Heilung. Neue Medikamente waren früher meist glückliche Zufallsfunde. Inzwischen wollen Wissenschaftler aber herausfinden, was bei Krankheiten im Körper eigentlich schiefläuft und gezielt Wirkstoffe dafür entwickeln. Das FMP erforscht dafür die wichtigsten Bausteine der Körperzellen, die Proteine (Eiweißstoffe). Dabei handelt es sich um unendlich wandelbare Moleküle – sie katalysieren Reaktionen, übermitteln Signale und bilden das Grundgerüst des Lebens. Mit den unterschiedlichsten Methoden erforschen die Wissenschaftler am FMP die Form der Protein-Moleküle, wie sie funktionieren und mit welchen Wirkstoffen man sie beeinflussen kann. Daraus wird einmal die Medizin der Zukunft. Das FMP ist ein Institut der Leibniz-Gemeinschaft und des Forschungsverbunds Berlin.

Silke Oßwald | Leibniz-Institut FMP
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften