Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische auf der Flucht

26.06.2015

Reflexartig weichen Menschen und Tiere einem schnell herannahenden Objekt aus. Dadurch vermeiden sie Kollisionen oder entkommen Fressfeinden, die ihnen auflauern. Damit dies möglich ist, muss das Gehirn Richtung und Geschwindigkeit eines Reizes mit seinem Sehsystem berechnen und ein entsprechendes Ausweichmanöver einleiten. Wie das Gehirn dies bewerkstelligt, ist zum größten Teil unklar.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München haben nun in Zebrafischlarven gezeigt, was einen herannahenden Feind ausmacht und in welcher Gehirnregion der Feind als Bedrohung erkannt und die Fluchtreaktion eingeleitet wird.


Das Zebrafisch-Tectum erkennt ein herannahendes Objekt als Bedrohung. Ihre Informationen erhält diese Gehirnregion von Nervenzell-Axonen der Netzhaut (hier blau gefärbt).

Max-Planck-Institut für Neurobiologie / Temizer

Ducken! Dieser Hinweis ist in der Regel gar nicht nötig, wenn wir sehen, dass sich uns ein Objekt auf Kollisionskurs nähert. Egal ob Fliege, Fisch, Maus oder Mensch – solch eine Situation löst in der Regel eine stereotype Ausweichreaktion aus. So können potentielle Räuber oder Verletzungen vermieden werden.

"Da das Verhalten quer durch das Tierreich so ähnlich ist, gibt es dafür wahrscheinlich ein festverdrahtetes Programm im Gehirn", fasst Incinur Temizer den Kern ihrer Doktorarbeit zusammen. In der Abteilung von Herwig Baier am Max-Planck-Institut für Neurobiologie untersucht sie an diesem Beispiel, wie das Gehirn Sinneseindrücke in Verhaltensantworten umwandelt.

Incinur Temizer und ihre Kollegin Julia Semmelhack konnten nun zeigen, dass bereits wenige Millimeter große Zebrafischlarven fliehen, wenn sich ein Objekt auf sie zubewegt. Um die Lage der zuständigen Schaltkreise im Gehirn einzuengen, bestimmten die Wissenschaftler zunächst einmal den genauen Auslöser des Fluchtreflexes.

In verschiedenen Versuchen zeigten die Forscher den Fischen daher eine Palette von Objekten, die größer, kleiner, heller oder dunkler wurden. Die Ergebnisse zeigten, dass eine dunkle, größer werdende Scheibe den Fluchtreflex am zuverlässigsten auslöst.

Die Forscher konnten nun die Gehirnaktivität in Antwort auf diesen "Schlüsselreiz" mit optischen Methoden messen. Dies ist möglich, da die kleinen Fischchen komplett durchsichtig sind. Mit Hilfe einer genetischen Modifikation leuchten die Hirnareale unter dem Mikroskop auf, die gerade aktiv sind. So konnten die Wissenschaftler aus der Masse der Zellen nach und nach herausfiltern, wo der drohende Feind erkannt und der Fluchtreflex ausgelöst wird.

Durch das Bild des herannahenden Feindes auf der Netzhaut werden ganz bestimmte Ganglienzellen aktiviert. Diese leiten ihre Information in das sogenannte Tectum im Fischgehirn weiter. Im Tectum werden Objekte einem Ort im visuellen Raum zugeordnet und Bewegungen zu oder weg von diesen Objekten koordiniert.

"Wir konnten erstmals zeigen, dass die Nervenzellen der Netzhaut ein herannahendes Objekt erkennen und durch Verbindungen zum Tectum das Ausweichmanöver einleiten", fasst Julia Semmelhack das Ergebnis der gerade publizierten Studie zusammen. Ein recht eindeutiges Ergebnis, denn als die Forscher den Input der Ganglienzellen in das Tectum unterbrachen, waren die Fische nicht vollständig blind, reagierten aber nicht mehr auf herannahende Objekte.

ORIGINALVERÖFFENTLICHUNG:
Incinur Temizer, Joseph Donovan, Herwig Baier, Julia Semmelhack
A visual pathway for looming-evoked escape in larval zebrafish
Current Biology, online am 25. Juni 2015

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker[a]neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier[a]neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie
http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Prof. Dr. Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie