Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische als Ton-Ingenieure

28.02.2017

Regensburger Wissenschaftler haben die Sprache von Glasmesserfischen erforscht.

Fische werden wohl überall auf der Welt geschätzt, vor allem auf dem Teller oder an der Sportangel. Die kognitiven Fähigkeiten dieser „niederen Wirbeltiere“ gelten jedoch als eher beschränkt, jedenfalls im Vergleich zu anderen Wirbeltieren; auch hätten sie nach herkömmlicher Meinung kein Schmerzempfinden.


Der südamerikanische Glas-Messerfisch „Eigenmannia virescens“. Im "Kinnbereich" sind die Elektrorezeptor-Organe als helle Punkte zu erkennen.

Foto: Prof. Dr. Bernd Kramer

Zu Unrecht, findet J. Balcombe des Humane Society Institute for Science and Policy (Washington, D.C.) in seinem Bestseller „What a fish knows. The inner life of our underwater cousins“, in dem er zeigt, zu welch staunenswerten Sinnes-, Orientierungs-, Lern- und Intelligenzleistungen Fische fähig sind.

Prof. Dr. Bernd Kramer, Institut für Zoologie an der Universität Regensburg, hat das hochentwickelte Kommunikationssystem südamerikanischer Glas-Messerfische „Eigenmannia virescens“ erforscht, die ein Beispiel für Balcombe’s These sind. Diese besitzen wie andere Messerfische (Gymnotiformes) ein elektrisches Organ, das lebenslang ein elektrisches Signal von sinusähnlicher Kurvenform und individuell variabler Frequenz zwischen 250 – 600 Hertz sendet.

Die gesellig lebende, nachtaktive Eigenmannia überwacht ihre eigenen und die elektrischen Signale von Artgenossen mit Hilfe ihrer Elektrorezeptor-Organe, die dem Oktavo-Lateralis-Sinnessystem angehören. Dieses Sinnessystem umfasst auch die bei allen Fischen vorhandenen mechanosensiblen Seitenlinienorgane. Die „elektrischen Stimmen“ von „Eigenmannias“ Artgenossen sind jedoch nur als Überlagerung mit dem eigenen Signal verfügbar, ähnlich wie in einer gut besuchten Wirtschaft, in der man kaum sein eigenes Wort versteht.

Trotzdem gelingt es „Eigenmannia“, nicht nur die Sende-Frequenz eines Artgenossen im Verhältnis zur eigenen zu bestimmen und – falls sie der eigenen zu ähnlich ist – ihr auszuweichen, sondern auch noch die Individuen zu unterscheiden. Jungtiere erzeugen ein fast reines Sinussignal mit nur wenigen, schwachen Harmonischen oder Obertönen, in der Klangfarbe einem stumpfen Flötenton vergleichbar (Obertöne sind nach J. Fourier, 1768 – 1830, ganzzahlige Vielfache der Grundfrequenz).

Weibchen erzeugen mehr und intensivere Obertöne, nochmals gesteigert bei erwachsenen Männchen, deren hörbar gemachte Signale einem brillanten Geigenton ähneln. Damit korreliert die Signal-Kurvenform: vom beinahe symmetrischen Sinussignal der Jungtiere zu einer periodischen Folge breiter Pulse bei den Männchen (das Integral über die Zeit ist bei allen gleich Null). Diese und andere Kurvenformen rekonstruiert „Eigenmannia“ aus der elektrosensorischen Analyse des Überlagerungssignals, das eine minimale Differenzfrequenz besitzen muss, einer sog. Schwebung.

In futterbelohnten Dressurexperimenten mit synthetischen Signalen unterschied „Eigenmannia“ selbst Signale gleichen Obertongehalts, deren Harmonische lediglich gegeneinander zeitverschoben waren, und die sich daher in der Kurvenform unterschieden.

Solche hörbar gemachten Signale können wir Menschen nicht unterscheiden, sonst hätte es keine HiFi-Schallplatten und Musik-Kassetten geben können, deren Aufnahmetechnik frequenzabhängige Phasenverschiebungen bedingt. Für „Eigenmannia“ wären diese Aufnahmen sehr wohl unterscheidbar und daher nicht gut genug.

Es ist nicht bekannt, wann und wie die Vorfahren der Messerfische, von denen es weit über 100 Arten gibt, darauf kamen, artspezifische Phasenverschiebungen der Obertöne des elektrischen Signals auszunützen um innerartliche und zwischenartliche Individualität zu kodieren. Kurvenform-Unterschiede hochfrequenter Signale können erst seit der Entwicklung des Oszilloskops, d. h. seit etwa 1930, dargestellt werden. J. Balcombe kann jedoch zugestimmt werden: was Fische alles wissen und können ist eine ganze Menge.

Ansprechpartner für Medienvertreter:
Universität Regensburg
Prof. Dr. Bernd Kramer
Institut für Zoologie
Telefon: 0941 943-2263
E-Mail: bernd.kramer@ur.de

Weitere Informationen:

http://Publikation: Animal Sentience 2017.001: “Kramer on Balcombe on Fish Knows”; abrufbar unter: http://animalstudiesrepository.org/cgi/viewcontent.cgi?article=1188&context=...

Claudia Kulke M.A. | Universität Regensburg

Weitere Berichte zu: Artgenossen Aufnahmetechnik Fische Grundfrequenz Wirbeltiere Zoologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics