Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Finnische Fliegen halten keine Siesta

15.03.2017

Taufliegen aus warmen Gefilden halten Mittagsruhe, solche aus dem Norden dagegen nicht. Biologen der Uni Würzburg haben nun die innere Uhr afrikanischer Fliegen verstellt. Auch diese reduzierten darauf ihre Siesta.

Es gibt weltweit mehr als 2.000 Taufliegen-Arten. Einige von ihnen leben vorwiegend in warmen Gefilden, andere sind eher in nördlichen Breiten beheimatet. „Wir wollten herausfinden, ob sich die innere Uhr der Nord-Arten von denen ihrer südlichen Verwandten unterscheidet“, erklärt Professor Charlotte Helfrich-Förster vom Biozentrum der Universität Würzburg. „Wir haben dazu zwei Taufliegen-Arten aus Finnland mit einer aus Tansania verglichen.“


Fliegen, die am Äquator leben, sind nur in der Morgen- und Abenddämmerung aktiv; dazwischen ruhen sie. Fliegen aus Finnland hingegen drehen am frühen Nachmittag so richtig auf und bleiben dann bis zum Anbruch der Dunkelheit aktiv.

Lange Siesta am Äquator

Die Wissenschaftler variierten im Labor die Länge der Hell- und Dunkelphasen, unter denen sie die Tiere hielten. In ihrem ersten Experiment folgten auf zwölf Stunden Tag zwölf Stunden Nacht. Diese Lichtverhältnisse entsprechen denen am Äquator, wo Tag und Nacht das ganze Jahr über ungefähr gleich lang sind.

Die afrikanischen Fliegen zeigten unter diesen Bedingungen ein charakteristisches Aktivitätsmuster: Sie waren nur in der Morgen- und Abenddämmerung aktiv; dazwischen ruhten sie. In der Natur ist eine solche Siesta sehr sinnvoll, da die Tierchen so die Tageshitze besser überstehen.

Die Zweiflügler aus Finnland ließen es dagegen morgens etwas ruhiger angehen, drehten dafür aber am frühen Nachmittag so richtig auf und blieben dann bis zum Anbruch der Dunkelheit aktiv. Auf eine Mittagspause verzichten sie weitgehend. Dies macht vom biologischen Standpunkt aus durchaus Sinn: Selbst im Sommer sticht in Nordskandinavien die Sonne selten so sehr, dass sie den Tieren gefährlich werden könnte.

Nun verlängerten die Wissenschaftler den Labortag: Sie ließen die Lampen für 20 Stunden brennen, bevor sie sie für vier Stunden ausschalteten. Die Tiere aus Tansania hielten daraufhin nicht etwa länger Pause, sondern wuselten schon lange vor der Abenddämmerung wieder los. Ihr Aktivitätspeak fiel nun also in eine Zeit, in der normalerweise noch brütende Hitze herrschen würde. Gäbe es in Tansania 20-Stunden-Tage, wäre ein solches Verhalten wohl lebensgefährlich.

Winzige Unterschiede im Fliegenhirn

Die innere Uhr der Süd-Fliegen ist also auf mehr oder weniger konstante Tageslängen getrimmt: Die Pause zwischen Morgen- und Abend-Aktivität ist stets ungefähr gleich lang. Die Finnen passten dagegen ihre Aktivität an die längeren Tage an: Sie nutzten die längere Helligkeits-Phase für eine noch ausgedehntere Futtersuche, die wieder erst mit Anbruch der Nacht endete. „Die Uhren beider Arten reagieren also augenscheinlich sehr unterschiedlich auf veränderte Hell-Dunkel-Phasen“, betont Charlotte Helfrich-Förster. „Wir haben uns gefragt, warum das so ist.“

Auf den ersten Blick ist der innere Zeitmesser aller drei Arten gleich aufgebaut: Sowohl die Taufliegen aus Finnland als auch die aus Tansania verfügen über dieselben Uhr-Neuronen – das sind die Nervenzellen im Gehirn, aus denen ihr Taktgeber besteht. Die Würzburger Forscher haben sich daher die Fliegenhirne genauer angeschaut. „Dabei konnten wir zeigen, dass die finnischen Arten in bestimmten Neuronen keinen Blaulichtrezeptor bilden – ganz im Gegensatz zu ihrer afrikanischen Verwandten“, sagt Helfrich-Förster. „Die betroffenen Nervenzellen haben also keinen Sensor für Tag oder Nacht.“ Anderen Neuronen fehlte ein Molekül namens PDF. PDF vermittelt normalerweise die empfangenen Hell-Dunkel-Signale an andere Zentren im Gehirn weiter.

Fliegen-Uhr verstellt

Aber sind es tatsächlich diese Unterschiede, die zu dem veränderten Aktivitätsmuster bei den skandinavischen Tierchen führen? Um diese Frage zu beantworten, „verstellten“ die Würzburger Wissenschaftler die innere Uhr der afrikanischen Taufliege. Durch einen genetischen Eingriff schalteten sie die Produktion des Blaulichtrezeptors in denjenigen Nervenzellen ab, in denen er auch bei den finnischen Fliegen fehlte. Ähnlich gingen sie für das PDF vor. Das Resultat dieser Manipulation war bemerkenswert: „Die Taufliegen aus Tansania zeigten in ihrer Aktivität nun einen ganz ähnlichen Rhythmus wie die aus Finnland“, betont Professor Helfrich-Förster. „Auch ihre Siesta war nicht mehr so ausgeprägt.“

Die Ur-Taufliege stammte vermutlich aus Afrika. Im Laufe der Zeit haben sich die Tiere dann auch in kühleren Breiten angesiedelt. Die Wissenschaftler nehmen an, dass sich in diesem Zuge auch ihre innere Uhr verändert hat. Die Tiere waren so an die im Jahresrhythmus stark schwankenden Tageslängen, aber auch die geringere Sonnenintensität besser angepasst.

Pamela Menegazzi, Elena Dalla Benetta, Marta Beauchamp, Matthias Schlichting, Ingolf Steffan-Dewenter und Charlotte Helfrich-Förster: Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids; Current Biology; DOI: 10.1016/j.cub.2017.01.036

Kontakt

Prof. Dr. Charlotte Helfrich-Förster, Lehrstuhl für Neurobiologie und Genetik, T: (0931) 31-88823, E-Mail: charlotte.foerster@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
https://www.uni-wuerzburg.de/sonstiges/meldungen/single/artikel/finnische-fliegen-halten-keine-siesta/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics