Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fingerabdrücke von Hirnleistungen

15.02.2012
Neurowissenschaftler entdecken wichtige Zusammenhänge von Informationsverarbeitungsprozessen im Gehirn.

Jeder Oberstufenschüler muss abstrakte und hochkomplizierte Rechenaufgaben lösen. Für solche Aufgaben braucht er notwendigerweise die Kenntnisse der Grundrechenarten, die er in der Grundschule gelernt hat. Nach einem ähnlichen Prinzip arbeitet wahrscheinlich unser Gehirn, wenn es höhere Wahrnehmungs- und Verhaltensfähigkeiten ausführen soll, wie z.B. Nachdenken, Entscheiden oder Planen. Wenn wir eine Speisekarte lesen und überlegen, was wir essen wollen, vollzieht unser Gehirn verschiedene Grundrechnungen, bevor wir die endgültige Wahl treffen und die Bestellung aufgeben.

Am Centrum für Integrative Neurowissenschaften der Universität Tübingen haben Hirnforscher zusammen mit Kooperationspartnern entdeckt, dass Schwingungsmuster von Hirnwellen, die während der Informationsverarbeitung gemessen werden, wahrscheinlich „Fingerabdrücke“ von solchen Grundrechenarten des Gehirns sind.

„Kanonische neuronale Berechnungen“ nennt man die Informationsverarbeitungsprozesse im Gehirn, die sich in ähnlicher Weise bei ganz unterschiedlichen Wahrnehmungs- und Verhaltensprozessen zeigen und „Standardrechnungen“ unseres Gehirnes abbilden. Markus Siegel vom Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen untersucht zusammen mit seinen Partnern Tobias Donner aus Amsterdam und Andreas Engel aus Hamburg die Zusammenhänge von solchen kanonischen Berechnungen und den spezifischen Frequenzmustern von Hirnwellen, die durch Informationsverarbeitungsprozesse im Gehirn ausgelöst werden. Die Wissenschaftler haben in der renommierten Zeitschrift „Nature Reviews Neuroscience“ die Ergebnisse jahrelanger Forschung auf dem Gebiet des Zusammenspiels von großen Neuronennetzwerken reflektiert und bewertet (Nature Rev. Neuroscience Vol 13 No 2, February 2012). Sie schlagen darin vor, dass die spezifischen Frequenzmuster von Hirnwellen, auch Oszillationen genannt, „spektrale Fingerabdrücke“ von kanonischen neuronalen Berechnungen sind. Untersucht haben die Wissenschaftler diese Hypothese mit Hilfe von Elektroenzephalografie (EEG) und Magnetoenzephalografie (MEG). Während Versuchspersonen Entscheidungen treffen, wird ihre Gehirnaktivität mit EEG oder MEG gemessen. Bei der Anwendung des EEG wird die elektrische Aktivität des Gehirns durch die Spannungschwankungen an der Kopfoberfläche gemessen, wohingegen beim MEG die magnetische Aktivität des Gehirns aufgezeigt wird.

Der Vergleich ihrer eigenen Versuchsdaten und der Ergebnisse zahlreicher Kollegen der Oszillationsforschung, führte zu der Hypothese einer Korrelation der spektralen Fingerabdrücke mit kanonischen neuronalen Berechnungen. Veranschaulicht bedeutet dies, dass bei so verschiedenen Verhaltensvorgängen, wie z.B. der Betätigung eines Lichtschalters (motorische Aktivität) und der Wahrnehmung des angeschalteten Lichts (visuelle Aktivität), ähnliche spektrale Fingerabdrücke gemessen werden können, wenn diese Vorgänge mit ähnlichen kanonischen Berechnungen im Gehirn einhergehen.

Markus Siegel, der seit Juni 2010 am CIN arbeitet, ist fasziniert von dem Zusammenspiel der vielschichtigen Gehirnprozesse, die unsere höheren Hirnleistungen wie Denken, Entscheiden und Handeln letztendlich hervorbringen. Deshalb forscht er in seiner Arbeitsgruppe am CIN an dem Zusammenhang zwischen höheren Hirnleistungen, neuronalen Verarbeitungsprozessen und Oszillationsmustern. „Für mich eröffnen Oszillationen einen neuen Zugang zu den neuronalen Netzwerkmechanismen, die höheren Gehirnprozessen zu Grunde liegen“, so Siegel.

Diese Ergebnisse haben wichtige Auswirkungen auf die Erforschung von psychiatrischen Erkrankungen wie zum Beispiel Schizophrenie, Autismus und Multiple Sklerose. Viele basieren auf einer Störung jener neuronaler Netzwerke, die letztlich für die „kanonischen Berechnungen“ verantwortlich sind. Mit Ihrer Grundlagenforschung liefern die Wissenschaftler wichtige Weichenstellungen für das Verständnis und mögliche Therapieansätze für solche neurobiologischen Erkrankungen.

Kontakt:
Dr. Markus Siegel
Universität Tübingen
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Otfried-Müller-Str.47
72076 Tübingen
Tel.: +49 7071 29-81200
markus.siegel [at] uni-tuebingen.de
www.cin.uni-tuebingen.de/research/siegel.php

Dr. Petra Heymann
Wissenschaftliche Koordinatorin
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Paul-Ehrlich-Straße 17
72076 Tübingen
Tel.: +49 7071 29-89184
petra.heymann [at] cin.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.cin.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie