Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Fingerabdruck für Gene

01.03.2010
Zellen haben zwar keinen Mund, müssen aber trotzdem Stoffe aus der Außenwelt aufnehmen. Ist dieser als Endozytose bezeichnete Vorgang gestört, können Erkrankungen wie Krebs, Morbus Huntington oder Diabetes entstehen.

Wissenschaftler vom Max-Planck-Institut für molekulare Zellbiologie und Genetik haben deshalb mit einer neuen Strategie untersucht, welche Gene an der Aufnahme von Stoffen in die Zelle beteiligt sind, und welche Funktion sie dabei haben. Die Wissenschaftler erhoffen sich von den Ergebnissen auch wichtige Erkenntnisse darüber, wie künftig Infektionen verhindert und Erkrankungen behandelt werden könnten.

Zellen nehmen Fremdmaterial auf, indem sie Bläschen von ihrer Zellmembran abschnüren, die in ihrem Innern Substanzen von außen einschließen. Je nach Inhaltsstoff werden diese Vesikel - auch Endosomen genannt - an unterschiedliche Orte innerhalb der Zelle transportiert und dort weiter verarbeitet bzw. abgebaut. Auch Bestandteile der Zellmembran selbst gelangen auf diesem Endosomen-Fließband ins Zellinnere.

Verschieden spezialisierte Vesikel bilden somit ein kompliziertes Transport-Netzwerk, über das eine Vielzahl von Substanzen ihren Bestimmungsort erreicht. Wie im Detail jedoch beispielsweise Bestandteile des Zellkerns oder der Zellmembran zu ihren jeweiligen Bestimmungsorten gelangen, ist bislang weitgehend unbekannt.

Die neue Untersuchungsstrategie offenbarte den Wissenschaftlern bislang ungeahnte Einblicke in die hoch komplizierten Prozesse, die während der Endozytose ablaufen. So haben sie auf ihren Aufnahmen entdeckt, dass der Ausfall bestimmter Gene dazu führt, dass Vesikel in der Peripherie der Zellen stecken bleiben und nicht ins Zentrum transportiert werden. Zudem werden unterschiedliche Stoffe offenbar teilweise von anderen Genen an ihr Ziel dirigiert. Gesteuert wird die Endozytose mit Hilfe verschiedener Signalwege. Gleichzeitig nutzen die Zellen sie, um die Menge von Signalmolekülen im Innern oder in der Zellmembran anzupassen - Endozytose und Signalbahnen beeinflussen sich also gegenseitig. Alles in allem sind über 4.000 Gene direkt oder indirekt an der Endozytose beteiligt. "Unsere Ergebnisse zeigen, dass Zellen nicht einfach drauf los futtern und mehr oder wenig beliebig Stoffe aufnehmen. Sie legen vielmehr ganz genau fest, was sie wann in welchen Mengen benötigen und wohin es in der Zelle geschafft werden soll", sagt Marino Zerial, Direktor am Max-Planck-Institut für molekulare Zellbiologie und Genetik.

Gestörte Endozytose kann krank machen

Die enorme Anzahl an beteiligten Genen spiegelt auch die Bedeutung der Endozytose im Organismus wider. So hängt nicht nur die Bildung wichtiger Stoffwechselprodukte wie z.B. Insulin von der Endozytose ab, sondern auch Viren nutzen Endosomen, um Zellen zu infizieren. Immunzellen wiederum verschlingen Krankheitserreger und verdauen sie in Vesikeln. Gefährliche Infektionen könnten also eines Tages möglicherweise verhindert werden, wenn es gelänge, die Endozytose von Viren und Bakterien zu unterbinden. Auch Erkrankungen wie Alzheimer oder Morbus Huntington hängen mit einem geschädigten Transportsystem in Zellen zusammen, denn schädliche Proteine können dadurch nicht mehr aus Nervenzellen entfernt werden. Wenn also die Rolle der verschiedenen Gene bei der Endozytose bekannt ist, können in Zukunft leichter Behandlungsmöglichkeiten gegen diese Erkrankungen entwickelt werden.

Dank der neuen Technik aus Dresden wird dies künftig sehr viel einfacher sein. Denn die Max-Planck-Forscher konnten exakt messen, welche Rolle Gene an einem bestimmten Ablauf in einer Zelle spielen. Dazu werteten sie Mikroskopiebilder anhand Dutzender verschiedener Parameter quantitativ aus und ordneten jedem Gen eine bestimmte Funktion in dem Prozess zu. "Wir haben die Aktivität aller Gene abgetastet und abgebildet. So konnten wir von jedem Gen ein quantitatives Profil erstellen - jedes Gen erhält also quasi einen individuellen Fingerabdruck. Das gibt uns ein weitaus umfassenderes Verständnis davon, wie die verschiedenen Abläufe in der Zelle zusammen wirken. Wir sind auf dem richtigen Weg, eine "virtuelle Zelle" zu schaffen, in der wir alle Prozesse und Wechselwirkungen modellhaft verstehen", erklärt Marino Zerial.

Neue Therapien verlangen nach neuen Untersuchungsstrategien

Möglich gemacht hat dies eine Kombination mehrer Techniken. Die Dresdner Wissenschaftler blockierten nacheinander jedes der rund 24.000 menschlichen Gene mit Hilfe von RNA-Molekülen (siRNAs), die sich an bestimmte Abschnitte im Erbgut anlagern und das zugehörige Gen stumm schalten. Als nächstes markierten sie zwei Proteine, die von den untersuchten Zellen in Vesikel aufgenommen werden, mit Fluoreszenzfarbstoffen und machten sie so für eine automatisierte Bildanalyse-Software sichtbar. Anstatt die Mikroskop-Aufnahmen subjektiv und anhand weniger nachprüfbarer Kriterien zu analysieren, legten die Forscher 62 verschiedene Parameter für die automatisierte Auswertung der Aufnahmen fest (Multi-Parameter-Bildanalyse). Diese Kriterien halfen ihnen zu bestimmen, wie sich die Blockade eines Gens auf die Endozytose auswirkt. So konnten sie unter dem Mikroskop beobachten, wie sich die Aufnahme von Stoffen in die Zelle veränderte, wenn eines der rund 24.000 menschlichen Gene nicht aktiv war.

"Wir haben eine komplett neue Strategie entwickelt, die viele Komponenten zu einem großen Analysesystem verbindet: ein RNAi-Screen, automatische, hoch aufgelöste Mikroskopie, eine quantitative Bildanalyse nach mehreren Parametern - und Rechenpower", berichtet Zerial. Am Ende häuften sich zweieinhalb Millionen Bilder an, die ausgewertet werden mussten. Die unglaublichen Datenmengen konnte deshalb nur noch mit Hilfe eines Supercomputers bewältigt werden: Dies wurde in einer Kooperation mit dem Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) an der TU Dresden möglich. Ein Computer hätte für die Auswertung immerhin über 4 Millionen Stunden benötigt, um schließlich statistisch verlässliche Daten zu bekommen. "Aber die Kraftanstrengung hat nicht nur wichtige neue Erkenntnisse gebracht; sie war auch als Ausgangsbasis dafür nötig, um diese Technologie in Zukunft effizienter und kostengünstiger einsetzen zu können", so Zerial.

Der nächste Schritt wird sein, das erfolgreich durchgeführte Screening-Programm nun an komplexeren Zellen oder mit Hilfe von Modellorganismen, in denen ein bestimmtes Krankheitsbild simuliert wird, zu testen. Dann wird sich sein wahres Potenzial vor allem für die Medikamentenentwicklung zeigen. Ivan Baines, Director of Services and Facilities am Max-Planck-Institut für molekulare Zellbiologie und Genetik, umschreibt die Zukunft des Projekts: "Dann werden wir sehen, ob die Technik dabei hilft, neue Therapieansätze zu finden und genau zwischen heilenden und unerwünschten toxischen Wirkungen möglicher Wirkstoffe unterscheiden zu können."

Originalveröffentlichung:

Claudio Collinet, Martin Stöter, Charles R. Bradshaw, Nikolay Samusik, Jochen C. Rink, Denise Kenski, Bianca Habermann, Frank Buchholz, Robert Henschel, Matthias S. Mueller, Wolfgang E. Nagel, Eugenio Fava, Yannis Kalaidzidis & Marino Zerial
Systems survey of endocytosis by multiparametric image analysis
28 February 2010, Advance Online Publication (AOP) on www.nature.com
doi: 10.1038/nature08779
Weitere Informationen:
Prof. Dr. Marino Zerial
Max-Planck-Institut für molekulare Zellbiologie und Genetik
Pfotenhauerstraße 108
01307-Dresden
Tel. +49 (351) 210 1100
Fax: +49 (351) 210 1389
eMail: zerial@mpi-cbg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-cbg.de
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie