Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filter im Gehirn sorgt für klare Ansagen

06.09.2012
DZNE-Forscher: neuronale Hemmung ist Voraussetzung für Gedächtnisbildung

Bei jeder Aktivität im Gehirn werden Signale von einer zur nächsten Nervenzelle weitergegeben. Dabei prasseln oft bis zu tausend auf eine einzelne Zelle ein.


Neuronale Verarbeitung von Hemmung und Erregung in kleinsten Nervenzellfortsätzen. Schematische Darstellung eines winzigen Nervenzellfortsatzes (Dendrit), der erregende und hemmende Signale verarbeitet.
Quelle: C.Müller/DZNE


Nervenzellfortsätze im Fokus Bonner Wissenschaftler: Hochauflösendes mikroskopisches Foto eines Nervenzellfortsatzes (Dendrit) einer lebenden Nervenzelle.
Quelle: C.Müller/DZNE

Damit daraus ein präzises Signal entsteht, besitzt das Gehirn ein ausgeklügeltes Hemmsystem. Wissenschaftler um Prof. Dr. Stefan Remy vom Deutschen Zentrum für Neurodegenerative Erkrankungen und der Universität Bonn zeigen jetzt wie das funktioniert.

„Das System wirkt wie ein Filter, der nur die wichtigsten Impulse durchlässt“, so Remy. „Das bringt gezielte neuronale Muster hervor, die für die Speicherung im Langzeitgedächtnis unerlässlich sind.“ Die Ergebnisse werden am heute in der renommierten Fachzeitschrift „Neuron“ publiziert.

Wie funktioniert dieses Kontrollsystem genau? Wie können hemmende Signale die Aktivität einer Nervenzelle regulieren? Diese Frage stellten sich Stefan Remy und Kollegen. Bekannt ist, dass das System sehr wichtig bei Lernvorgängen ist. So zeigen neueste Erkenntnisse, dass es beispielsweise bei der Alzheimererkrankung gestört ist. Die Wissenschaftler untersuchten Nervenzellen des Hippocampus. Das ist eine Gehirnregion, die eine entscheidende Rolle bei der Gedächtnisbildung spielt.

Ob beim Lernen oder Erinnern – Informationen werden im Gehirn durch Nervenimpulse verarbeitet. Eingehende Signale gehen als erregende Signale in die Nervenzelle ein. Dort werden sie in verästelten Zellfortsätzen, den Dendriten verarbeitet, und selektiv an nachgeschaltete Zellen weitergeleitet. Dabei dienen die Dendriten als effiziente Verstärker hoch präziser Signale.

„Wir konnten zeigen, dass in ganz bestimmten Dendriten, den „starken Dendriten“, eingehende Signale besonders gut verstärkt werden. An „schwachen“ Dendriten ist eine Weiterleitung nur in ganz bestimmten Phasen möglich“, sagt Dr. Christina Müller, Post-Doktorandin in der Arbeitsgruppe von Stefan Remy und Erstautorin der Studie. Die Zellfortsätze sind unterschiedlich stark erregbar. „Starke“ Dendriten leiten vor allem synchrone erregende Signale sehr präzise und verlässlich weiter. Dabei können sie sich jeglicher Hemmung entziehen. Sie stellen so sicher, dass bestimmte, möglicherweise für Lernen und Gedächtnis besonders relevante Signale, zuverlässig weitergeleitet werden. Daraus ergeben sich definierte Aktivitätsmuster, die regelmäßig wiederholt werden. Das kann zu gleichzeitiger Erregung und damit zu einer Verknüpfung bestimmter Zellgruppen führen.

„Man nimmt an, dass diese gemeinsame neuronale Aktivität ein zelluläres Korrelat für Lernvorgänge ist“, so Müller. Denn zur Speicherung von Gedächtnisinhalten ins Langzeitgedächtnis müssen bestimmte Zellgruppen sehr präzise und wiederholt in der gleichen Abfolge aktiviert werden. Diese Aktivitätsmuster werden durch das Hemmsystem ermöglicht. Dies kann erklären, warum der Ausfall des Systems bei der Alzheimer-Erkrankung dramatische Folgen hat. Demnach wäre die Überführung von Inhalten in das Langzeitgedächtnis gestört.

Signale, die die Nervenzelle über „schwache“ Dendriten empfängt, können nur in Phasen schwacher Hemmung weitergegeben werden. Dabei können sie sich verändern und zu „starken“ Dendriten werden. Remy und Kollegen zeigen, dass sie dann ebenfalls zur präzisen Signalübertragung beitragen können. „Intrinsische Plastizität“ nennen die Wissenschaftler das. „Das macht Sinn. Denn auf diese Art können Zellgruppen gekoppelt und diese Kopplung permanent gemacht werden“, erklärt Remy. „Dies ist ein ganz neuer Lernmechanismus. Die Veränderung findet aber nicht wie bisher bekannt an der Synapse, sondern im Dendriten statt.“ Der Mechanismus könnte vor allem in besonderen Aktivitätsphasen stattfinden, zum Beispiel, wenn wir Neues erleben.

Mit ihren Ergebnissen leisten Remy und Kollegen einen wichtigen Baustein zum besseren Verständnis von Lernen und Gedächtnis.

Originalveröffentlichung:
Christina Müller, Heinz Beck, Douglas Coulter & Stefan Remy. Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron, online publiziert am 5.9.2012. doi: 10.1016/j.neuron.2012.06.025

Kontakt:
Jun.-Prof. Dr. Stefan Remy
Deutsches Zentrum für Neurodegenerative Erkrankungen
Biomedizinisches Zentrum 1
Sigmund-Freud-Str. 25
53105 Bonn
Tel: +49 228 287 51605
Email: Stefan.Remy@dzne.de

Sonja Jülich-Abbas
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
Holbeinstraße 13-15
53175 Bonn
Tel: +49 228 43302 – 263
Mobil: +49 172 2838930
Email: sonja.juelich-abbas@dzne.de

Sonja Jülich-Abbas | idw
Weitere Informationen:
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie