Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filmen von Chemie in Echtzeit mit der Hochgeschwindigkeits-Röntgenkamera

05.12.2014

Chemie ist allgegenwärtig. In chemischen Reaktionen lagern sich Atome in bzw. zwischen Molekülen um, während chemische Bindungen gebildet und gebrochen werden. Diese chemischen Bindungen bestehen aus Valenzelektronen.

Wissenschaftler des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnten jetzt zeigen, dass eine ultraschnelle Röntgenkamera nicht nur sensitiv gegenüber von chemisch inerten Rumpfelektronen ist, sondern auch die Bewegung von chemisch aktiven Valenzelektronen visualisieren kann.


Bildung und der Bruch von chemischen Bindungen entlang unterschiedlicher Reaktionswege.

Abb.: MBI


Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion.

Abb.: MBI

Dementsprechend ist die Bewegung von Valenzelektronen zentraler Bestandteil von jeder chemischen Reaktion. Dabei muss beachtet werden, dass lediglich ein Bruchteil dieser Valenzelektronen - oft nur ein kleiner Teil der Ladung eines Elektrons - aktiv an chemischen Reaktionen teilnimmt. Und dies geschieht äußerst schnell:

Die Dauer von vielen wichtigen chemischen Prozessen wie z.B. die ersten Schritte des Sehvorgangs und der Lichtsammlung in biologischen Systemen, beträgt lediglich wenige Femtosekunden (1 Femtosekunde = 10hoch-15 Sekunden). Die Aufnahme dieser chemisch aktiven Valenzelektronen ist daher äußerst anspruchsvoll. Erstens benötigt man eine Kamera mit exzellenter Zeit- und Ortsauflösung.

Zweitens wird eine sehr empfindliche Kamera benötigt, denn man ist nicht nur daran interessiert wie sich die Atome bewegen, sondern auch daran wie chemische Bindungen gebrochen und neue Bindungen gebildet werden - und das bedeutet den Bruchteil an aktiven Valenzelektronen aufzunehmen, welche sich im Meer aller Elektronen bewegen, die an die Atome in Molekülen gebunden sind.

Eine Röntgenkamera genügt leicht der ersten Voraussetzung. Die Streuung von Röntgenstrahlung durch Materie ist seit Entdeckung von Röntgenstrahlung ein unverzichtbares Hilfsmittel der Strukturauflösung mit atomarer Ortsauflösung.

Durch enormen technologischen Fortschritt können nun auch ultrakurze Röntgenblitze generiert werden, welche vorausgehende Untersuchungen um Zeitauflösung im Femtosekundenbereich erweitern können. Diese Röntgenblitze versprechen stroboskopische Schnappschüsse von chemischen und biologischen Prozessen in individuellen Molekülen zu generieren.

Das Erfüllen der zweiten Voraussetzung - Sensibilität gegenüber aktiven Valenzelektronen - gehört allerdings nicht zu den Stärken einer Röntgenkamera. Die Streuung von Röntgenstrahlung durch Moleküle wird immer durch Rumpfelektronen und inerte Valenzelektronen dominiert.

Daher wird generell angenommen, dass der kleine Teil von Valenzelektronen, welcher aktiv an chemischen Reaktionen beteiligt ist, im Gesamtstreusignal untergeht und damit die Aufnahme der ultraschnellen Umlagerung von aktiven Valenzelektronen mittels einer Röntgenkamera nicht möglich ist.

Unsere in Nature Communications veröffentlichte Arbeit schlägt einen Weg vor diese Herausforderung zu lösen. Wir demonstrieren theoretisch eine robuste und effektive Methode, welche es ermöglicht Informationen über chemisch aktive Valenzelektronen aus den Röntgenstreubildern eines einzelnen Moleküls zu extrahieren - ein entscheidender Schritt bei dem Bestreben die Bildung und den Bruch von chemischen Bindungen in Echtzeit mit atomarer Ortsauflösung aufzunehmen.

Unsere Arbeit zeigt wie die Bewegung von chemisch aktiven Valenzelektronen durch eine Kombination der routinemäßigen Analyse von Röntgenstreubildern mit der zusätzlichen Analyse jenes Bereichs der Streubilder, welcher auf einen relativ kleinen Impulstransfer beschränkt ist, sichtbar gemacht werden kann.

Die Arbeit zeigt nicht nur wie chemisch aktive Valenzelektronen mit Röntgenstrahlung aufgenommen werden können, sondern sie liefert auch experimentellen Zugang zu dem viel diskutierten Problem von synchroner gegen asynchrone Bindungsbildung und Bindungsbruch in chemischen Reaktionen. Die ultraschnelle Röntgenkamera bestätigt, dass die Antwort davon abhängt, ob die Atome genügend Energie haben, um die Energiebarriere, welche Reaktanden von Produkten trennt, zu überqueren, oder ob die Atome auf das Quantenphänomen des Tunnels durch die Energiebarriere zurückgreifen müssen.

Im ersten Fall bestätigen wir eine Verzögerungszeit zwischen dem Bruch von alten und der Bildung von neuen Bindungen. Im zweiten Fall beobachten wir keine Verzögerung: Der Bruch der alten und die Bildung der neuen Bindungen ist synchron. Wir hoffen, dass unsere Arbeit neue Einblicke in die Initialisierung und Kontrolle von komplexen chemischen und biologischen Reaktionen bringen wird.

Originalveröffentlichung:
Timm Bredtmann, Misha Ivanov, Gopal Dixit: X-ray imaging of chemically active valence electrons during a pericyclic reaction
Nature Communication doi:10.1038/ncomms6589

Abb. 1: Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion: Wir zeigen theoretisch, dass die ultraschnelle Röntgenkamera nicht nur sensitiv gegenüber von chemisch inerten Rumpfelektronen ist, sondern auch die Bewegung von chemisch aktiven Valenzelektronen visualisieren kann.

Abb. 2: Die Kombination der routinemäßigen Analyse von Röntgenstreubildern (A, B) mit der zusätzlichen Analyse jenes Bereichs, welcher auf einen relativ kleinen Impulstransfer beschränkt ist, ermöglicht die Bewegung von chemisch aktiven Valenzelektronen während einer perizyklischen Reaktion sichtbar zu machen (C, D). Die Bildung und der Bruch von chemischen Bindungen entlang unterschiedlicher Reaktionswege kann so direkt aufgenommen und analysiert werden.

Kontakt
Dr. Timm Bredtmann Tel: 030 6392 1239
Prof. Micha Ivanov Tel: 030 6392 1210
Dr. Gopal Dixit Tel: 030 6392 1239

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
im Forschungsverbund Berlin e.V
Max-Born-Institut
Max-Born-Straße 2A
12489 Berlin

Tel. ++49 30 6392 1505
Fax. ++49 30 6392 1509
E-Mail: mbi@mbi-berlin.de

Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.


Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie