Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filmen von Chemie in Echtzeit mit der Hochgeschwindigkeits-Röntgenkamera

05.12.2014

Chemie ist allgegenwärtig. In chemischen Reaktionen lagern sich Atome in bzw. zwischen Molekülen um, während chemische Bindungen gebildet und gebrochen werden. Diese chemischen Bindungen bestehen aus Valenzelektronen.

Wissenschaftler des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnten jetzt zeigen, dass eine ultraschnelle Röntgenkamera nicht nur sensitiv gegenüber von chemisch inerten Rumpfelektronen ist, sondern auch die Bewegung von chemisch aktiven Valenzelektronen visualisieren kann.


Bildung und der Bruch von chemischen Bindungen entlang unterschiedlicher Reaktionswege.

Abb.: MBI


Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion.

Abb.: MBI

Dementsprechend ist die Bewegung von Valenzelektronen zentraler Bestandteil von jeder chemischen Reaktion. Dabei muss beachtet werden, dass lediglich ein Bruchteil dieser Valenzelektronen - oft nur ein kleiner Teil der Ladung eines Elektrons - aktiv an chemischen Reaktionen teilnimmt. Und dies geschieht äußerst schnell:

Die Dauer von vielen wichtigen chemischen Prozessen wie z.B. die ersten Schritte des Sehvorgangs und der Lichtsammlung in biologischen Systemen, beträgt lediglich wenige Femtosekunden (1 Femtosekunde = 10hoch-15 Sekunden). Die Aufnahme dieser chemisch aktiven Valenzelektronen ist daher äußerst anspruchsvoll. Erstens benötigt man eine Kamera mit exzellenter Zeit- und Ortsauflösung.

Zweitens wird eine sehr empfindliche Kamera benötigt, denn man ist nicht nur daran interessiert wie sich die Atome bewegen, sondern auch daran wie chemische Bindungen gebrochen und neue Bindungen gebildet werden - und das bedeutet den Bruchteil an aktiven Valenzelektronen aufzunehmen, welche sich im Meer aller Elektronen bewegen, die an die Atome in Molekülen gebunden sind.

Eine Röntgenkamera genügt leicht der ersten Voraussetzung. Die Streuung von Röntgenstrahlung durch Materie ist seit Entdeckung von Röntgenstrahlung ein unverzichtbares Hilfsmittel der Strukturauflösung mit atomarer Ortsauflösung.

Durch enormen technologischen Fortschritt können nun auch ultrakurze Röntgenblitze generiert werden, welche vorausgehende Untersuchungen um Zeitauflösung im Femtosekundenbereich erweitern können. Diese Röntgenblitze versprechen stroboskopische Schnappschüsse von chemischen und biologischen Prozessen in individuellen Molekülen zu generieren.

Das Erfüllen der zweiten Voraussetzung - Sensibilität gegenüber aktiven Valenzelektronen - gehört allerdings nicht zu den Stärken einer Röntgenkamera. Die Streuung von Röntgenstrahlung durch Moleküle wird immer durch Rumpfelektronen und inerte Valenzelektronen dominiert.

Daher wird generell angenommen, dass der kleine Teil von Valenzelektronen, welcher aktiv an chemischen Reaktionen beteiligt ist, im Gesamtstreusignal untergeht und damit die Aufnahme der ultraschnellen Umlagerung von aktiven Valenzelektronen mittels einer Röntgenkamera nicht möglich ist.

Unsere in Nature Communications veröffentlichte Arbeit schlägt einen Weg vor diese Herausforderung zu lösen. Wir demonstrieren theoretisch eine robuste und effektive Methode, welche es ermöglicht Informationen über chemisch aktive Valenzelektronen aus den Röntgenstreubildern eines einzelnen Moleküls zu extrahieren - ein entscheidender Schritt bei dem Bestreben die Bildung und den Bruch von chemischen Bindungen in Echtzeit mit atomarer Ortsauflösung aufzunehmen.

Unsere Arbeit zeigt wie die Bewegung von chemisch aktiven Valenzelektronen durch eine Kombination der routinemäßigen Analyse von Röntgenstreubildern mit der zusätzlichen Analyse jenes Bereichs der Streubilder, welcher auf einen relativ kleinen Impulstransfer beschränkt ist, sichtbar gemacht werden kann.

Die Arbeit zeigt nicht nur wie chemisch aktive Valenzelektronen mit Röntgenstrahlung aufgenommen werden können, sondern sie liefert auch experimentellen Zugang zu dem viel diskutierten Problem von synchroner gegen asynchrone Bindungsbildung und Bindungsbruch in chemischen Reaktionen. Die ultraschnelle Röntgenkamera bestätigt, dass die Antwort davon abhängt, ob die Atome genügend Energie haben, um die Energiebarriere, welche Reaktanden von Produkten trennt, zu überqueren, oder ob die Atome auf das Quantenphänomen des Tunnels durch die Energiebarriere zurückgreifen müssen.

Im ersten Fall bestätigen wir eine Verzögerungszeit zwischen dem Bruch von alten und der Bildung von neuen Bindungen. Im zweiten Fall beobachten wir keine Verzögerung: Der Bruch der alten und die Bildung der neuen Bindungen ist synchron. Wir hoffen, dass unsere Arbeit neue Einblicke in die Initialisierung und Kontrolle von komplexen chemischen und biologischen Reaktionen bringen wird.

Originalveröffentlichung:
Timm Bredtmann, Misha Ivanov, Gopal Dixit: X-ray imaging of chemically active valence electrons during a pericyclic reaction
Nature Communication doi:10.1038/ncomms6589

Abb. 1: Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion: Wir zeigen theoretisch, dass die ultraschnelle Röntgenkamera nicht nur sensitiv gegenüber von chemisch inerten Rumpfelektronen ist, sondern auch die Bewegung von chemisch aktiven Valenzelektronen visualisieren kann.

Abb. 2: Die Kombination der routinemäßigen Analyse von Röntgenstreubildern (A, B) mit der zusätzlichen Analyse jenes Bereichs, welcher auf einen relativ kleinen Impulstransfer beschränkt ist, ermöglicht die Bewegung von chemisch aktiven Valenzelektronen während einer perizyklischen Reaktion sichtbar zu machen (C, D). Die Bildung und der Bruch von chemischen Bindungen entlang unterschiedlicher Reaktionswege kann so direkt aufgenommen und analysiert werden.

Kontakt
Dr. Timm Bredtmann Tel: 030 6392 1239
Prof. Micha Ivanov Tel: 030 6392 1210
Dr. Gopal Dixit Tel: 030 6392 1239

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
im Forschungsverbund Berlin e.V
Max-Born-Institut
Max-Born-Straße 2A
12489 Berlin

Tel. ++49 30 6392 1505
Fax. ++49 30 6392 1509
E-Mail: mbi@mbi-berlin.de

Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.


Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen