Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FIC-Proteine versetzen Bakterien in den Winterschlaf

21.08.2015

Bakterien verblüffen uns mit ihren Überlebensstrategien immer wieder aufs Neue. Wissenschaftler am Biozentrum der Universität Basel haben nun herausgefunden, wie Bakterien sich mithilfe eines sogenannten FIC-Toxins in einen Schlafzustand versetzen können. In der aktuellen Ausgabe von «Cell Reports» zeigen die Forscher den genauen Wirkmechanismus und erklären, wieso ihre Entdeckung neue Einblicke in die Evolution von Krankheitserregern gibt.

Für viele Gifte gibt es Gegengifte, die die Wirkung des Giftes wieder aufheben. Ganz ähnlich funktionieren sogenannte Toxin-Antitoxin-Systeme in Bakterien: Solange die Zelle ein Antitoxin produziert und dadurch das Toxin neutralisiert, wächst sie normal. Sobald das Antitoxin aber abgebaut wird, ausgelöst beispielsweise durch widrige Lebensbedingungen, wird das Toxin wirksam und hemmt wichtige zelluläre Vorgänge.


FIC-Toxine verändern die räumliche Struktur der DNA (blau) von Bakterien (rot: Zellmembran).

© Universität Basel, Biozentrum

Diese Systeme wirken daher wie ein Schalter, der in das bakterielle Wachstum eingreift und die Zellen in eine Art Schlafzustand versetzt, in dem sie zum Beispiel vor der Wirkung von Antibiotika geschützt sind. Die Forschungsgruppe von Prof. Christoph Dehio vom Biozentrum der Universität Basel hat nun einen neuen Wirkmechanismus von Toxinen aus der Gruppe der FIC-Proteine entdeckt.

FIC-Toxin versetzt Bakterien in Schlafmodus

In der Bakterienwelt sind Toxin-Antitoxin-Systeme weit verbreitet. Meist hemmen die Toxine die Proteinbildung oder die Energieversorgung des Bakteriums. Die Forscher um Dehio haben nun solche Toxine erstmals unter den über den gesamten Stammbaum des Lebens verbreiteten FIC-Proteinen entdeckt und konnten zeigen, dass diese über Veränderungen an der DNA wirken.

Demnach modifizieren die FIC-Toxine zwei Zielproteine, sogenannte Topoisomerasen, die der DNA der bakteriellen Zelle ihre charakteristische verdrillte Form geben und deren räumliche Struktur überwachen. Durch die neuen Toxine wird deren Aktivität komplett herunter gefahren.

«Man kann sich das so vorstellen, als ob bei den Topoisomerasen der Stecker gezogen wird», erklärt Alexander Harms, Erstautor und Fellowships For Excellence-Stipendiat des Biozentrums. Dadurch kommt es rasch zu massiven Veränderungen der Raumstruktur der DNA, wodurch die Bakterien in eine Art Schlafzustand fallen.

Neue Einblicke in die Evolution von Krankheitserregern

FIC-Proteine besitzen ein breites Spektrum an molekularen Aktivitäten. Bis jetzt wurde zumeist an FIC-Proteinen geforscht, die von krankheitserregenden Bakterien als Virulenzfaktoren in Wirtszellen injiziert werden.

Die Forscher um Dehio konnten in ihrer Studie nun erstmals eine Funktion von entwicklungsgeschichtlich ursprünglicheren FIC-Proteinen zeigen, die ihre Wirkung noch in Bakterienzellen selbst entfalten. Diese Entdeckung könnte dabei helfen, nachzuvollziehen, wie Krankheitserreger und ihre Werkzeuge in der Evolution entstehen.

Als Nächstes möchte Dehios Team die evolutionäre Verbindung von diesen ursprünglichen FIC-Toxinen zu den FIC-Proteinen aufklären, die von verschiedenen Erregern in Wirtszellen eingeschleust werden.

Originalbeitrag
Alexander Harms, Frédéric Valentin Stanger, Patrick Daniel Scheu, Imke Greet de Jong, Arnaud Goepfert, Timo Glatter, Kenn Gerdes, Tilman Schirmer & Christoph Dehio
Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology
Cell Reports (2015), doi:

Weitere Auskünfte
Prof. Dr. Christoph Dehio, Universität Basel, Biozentrum, Tel. +41 61 267 21 40, E-Mail: christoph.dehio@unibas.ch

Katrin Bühler | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie