Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Fic-Proteine ihre potenziell tödliche Enzymaktivität regulieren

23.01.2012
Forschende des Biozentrums der Universität Basel haben einen über die gesamte biologische Evolution konservierten regulatorischen Mechanismus aufgeklärt, der die bisher weitgehend unerforschte Enzymfamilie der Fic-Proteine in einen inaktiven Grundzustand zwingt.

Die Gruppen von Prof. Christoph Dehio und Prof. Tilman Schirmer konnten zeigen, dass durch die Veränderung einer einzigen Aminosäure diese Hemmung der Enzymaktivität aufgehoben wird. Die in der aktuellen Ausgabe der Fachzeitschrift «Nature» publizierten Ergebnisse erlauben es zukünftig, die potenziell tödliche Funktion der Fic-Proteine in Bakterien und höheren Lebewesen aufzuklären.


Links: Die Bindung des Antitoxins (blau) an das Fic-Protein (grau) unterbindet die AMPylierung des Zielproteins (magenta) und erlaubt somit normales Wachstum der Bakterien. Rechts: In Abwesenheit des Antitoxins wird das Zielprotein AMPyliert, wodurch die Zellteilung blockiert wird, was zu abnormalem filamentösem Bakterienwachstum führt. Illustration: Universität Basel

Fic-Proteine kommen in den meisten Lebensformen vom einfachen Bakterium bis zum Menschen vor. Erst wenige Vertreter dieser Proteinfamilie mit etwa 3000 Mitgliedern wurden bisher untersucht. Es handelt sich dabei um Enzyme, die andere Proteine durch das Anheften einer Adenosinmonophosphat-Gruppe (AMP), Teil des wichtigen Energieträgers ATP, chemisch verändern. Diese als AMPylierung bezeichnete Reaktion modifiziert gezielt die Funktion der Zielproteine.

Am besten untersucht ist die Funktion der Fic-Proteine von krankheitserregenden Bakterien, die in die Wirtszelle eingeschleust werden, um dort zelluläre Signalproteine zum Vorteil des Krankheitserregers zu verändern. Die Mehrheit der Fic-Proteine entfaltet aber vermutlich ihre Wirkung unmittelbar in der Zelle, in der sie produziert werden. Warum aber bisher nur für wenige Vertreter dieser Fic-Proteine eine biochemische Funktion nachgewiesen werden konnte, war bisher unverstanden. Den Grund hierfür haben nun die Forschungsgruppen des Infektionsbiologen Prof. Christoph Dehio und des Strukturbiologen Prof. Tilman Schirmer gefunden.

Das Zentrum der Enzymaktivität von Fic-Proteinen ist blockiert Die Forscher konnten zeigen, dass ein Aminosäurerest (Glutamat-Finger) in das aktive Zentrum von Fic-Proteinen hineinragt. Dieser verhindert eine produktive Bindung des ATP und erklärt den inaktiven Grundzustand dieser Enzyme. Erstaunlicherweise ist es dabei unerheblich, ob der hemmende Aminosäurerest Teil des Fic-Proteins selbst oder aber Teil eines separaten Proteins (genannt Antitoxin) ist. Erst wenn dieser Glutamat-Finger durch Veränderung des Erbguts zurechtgestutzt wird oder das ganze Antitoxin entfernt wird, erwacht die Aktivität des Enzyms – mit teilweise drastischen Konsequenzen für die betroffenen Zellen. So stellen bakterielle Zellen das Wachstum ein, während menschliche Zellen sogar sterben können.

Interdisziplinärer Forschungserfolg Dieser Durchbruch gelang den beiden Forschungsgruppen durch die Kombination von Methoden aus der Mikrobiologie, Zellbiologie, Strukturbiologie und Bioinformatik. Atomare räumliche Strukturen von Fic-Proteinen wurden mittels Röntgenkristallografie durch die Schirmer-Gruppe an der Swiss Light Source (Villigen PSI) bestimmt und liessen die detaillierte Geometrie des aktiven Zentrums des Enzyms mit dem hemmenden Glutamat-Finger erkennen. Die Gruppe von Dehio wiederum konnte durch Kombination von Funktionsstudien und Mutagenese die hemmende Rolle dieses Glutamat-Fingers nachweisen und durch umfangreiche Proteinsequenzvergleiche die allgemeine Bedeutung der Entdeckung aufzeigen.

Auf der Basis der gewonnenen Erkenntnisse sind nunmehr die meisten Vertreter der umfangreichen Fic-Proteinfamilie einer funktionellen Untersuchung zugänglich geworden. Weiterhin können Wissenschaftler mit diesem Wissen künftig detailliert den molekularen Mechanismus der Aktivierung von Fic-Proteinen unter natürlichen Bedingungen untersuchen.

Originalbeitrag
Philipp Engel, Arnaud Goepfert, Frédéric V. Stanger, Alexander Harms, Alexander Schmidt, Tilman Schirmer & Christoph Dehio
Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins
Nature, published online 22 January 2012 | doi: 10.1038/nature10729

Weitere Auskünfte
• Prof. Dr. Christoph Dehio, Biozentrum der Universität Basel, Tel. 061 267 21 40, E-Mail: christoph.dehio@unibas.ch

• Prof. Dr. Tilman Schirmer, Biozentrum der Universität Basel, Tel. 061 267 28 89, E-Mail: tilman.schirmer@unibas.ch

Heike Sacher | idw
Weitere Informationen:
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10729.html
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie