Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fertigstellung der bioliq®-Pilotanlage am KIT

05.05.2010
Der Fertigstellung der bioliq®-Pilotanlage am Campus Nord des Karlsruher Instituts für Technologie (KIT) steht nichts mehr im Wege. Nach der Zusage von Fördermitteln durch Bund und Land in Höhe von 11 Millionen Euro sind nun auch die Verträge mit den Unternehmen unter Dach und Fach, die bei der Realisierung der letzten beiden Prozessschritte mit dem KIT kooperieren. In diesen beiden Stufen geht es darum, aus biogenem Synthesegas umweltfreundlichen Biokraftstoff der zweiten Generation zu erzeugen.

"Erst mit dieser letzten Bauphase können wir die durchgehende Prozesskette vom Strohballen bis zur Zapfsäule demonstrieren, was für eine ganzheitliche Prozessbewertung unbedingt erforderlich ist", so Nicolaus Dahmen, Projektleiter für den Bau der Anlage. Synthesekraftstoffe, auch BtL-Kraftstoffe genannt (Biomass to Liquid), lassen sich aus Stroh und anderen biogenen Reststoffen herstellen. Der Vorteil: Sie eignen sich weder als Nahrungs- oder Futtermittel, noch beanspruchen sie zusätzliche Anbauflächen.

Die ersten Prozessstufen der bioliq®-Pilotanlage am KIT-Campus Nord haben die KIT-Wissenschaftler gemeinsam mit dem Industriepartner Lurgi GmbH bereits auf den Weg gebracht.

Der erste Schritt dient zunächst der Energieverdichtung. In regional verteilten Anlagen wird trockene Biomasse, wie Stroh oder andere biogene Reststoffe durch Schnellpyrolyse in ein erdölähnliches Zwischenprodukt aus Koks und Öl umgewandelt. Dieser sogenannte bioliqSynCrude® enthält etwa 90 Prozent der in der Biomasse gespeicherten Energie - seine Energiedichte ist mehr als zehnmal so hoch ist wie die der Ausgangsstoffe. Die Pilotanlage zu diesem Prozessschritt ist bereits auf den KIT-Campus Nord errichtet und läuft derzeit im Probebetrieb. Der bioliqSynCrude® lässt sich wirtschaftlich über große Strecken transportieren und anschließend in Großanlagen, wie sie zur Kraftstofferzeugung üblich sind, weiter verarbeiten.

Dort wird die energiereiche Suspension in einem nächsten Schritt zu Synthesegas, einer chemisch reaktiven Mischung aus Kohlenmonoxid (CO) und Wasserstoff (H2) umgewandelt. Hierzu dient ein Flugstromvergaser, eine Anlage, die auf dem KIT-Campus Nord derzeit im Bau ist. Der fließfähige bioliqSynCrude® wird dabei mit Sauerstoff unter Druck vermischt und reagiert bei über 1000 Grad Celsius zu den kleinen Chemiebausteinen. Diese lassen sich in der nächsten Stufe gezielt zu maßgeschneiderten Designerkraftstoffen zusammensetzen.

Dies passiert im dritten Anlagenteil, dessen Aufbau nun gemeinsam mit zwei Industriepartnern beginnt. Dies sind die Firmen MUT Advanced Heating GmbH aus Jena für die Heißgasreinigung und die Chemieanlagenbau Chemnitz GmbH, eine international tätige Gesellschaft für Verfahrenstechnik, die beim Anlagenteil der Synthese kooperiert. Beide Partner werden nicht nur die Anlagenteile liefern und errichten, sondern auch gemeinsam mit dem KIT in Betrieb nehmen und weiter entwickeln. „Wir treten damit in die wichtige Phase der Umsetzung im Pilotanlagenmaßstab von 100 Liter Designerkraftstoff pro Stunde ein“, so Dr. Peter Fritz, Vizepräsident für Forschung und Innovation des KIT. „Dies ist jetzt der wesentliche Schritt für die industrielle Umsetzung nach vielen Jahren der Vorlaufforschung im Labor.“

Bei der Heißgasreinigung ist es notwendig, zunächst Störstoffe wie Partikel, Chlor- und Stickstoff-Verbindungen aus dem Synthesegas abzutrennen. Die KIT-Wissenschaftler setzen dabei eine neuartige Technik ein, bei der die Reinigung bei 500 Grad Celsius abläuft. Gegenüber konventionellen Prozessen, die Temperaturen weit unter dem Gefrierpunkt des Wassers erfordern, lässt sich dadurch etwa 10 Prozent der Energie einsparen.

Der weitere Weg zum Kraftstoff verläuft normalerweise über mehrere chemische Zwischenstufen. Einige davon sind in der bioliq®-Pilotanlage durch ein innovatives Verfahren zu einer einzigen Prozessstufe zusammengefasst. In Anlehnung an bekannte Prozesse der Kraftstofferzeugung aus Erdgas wird schließlich aus Dimethylether zuerst ein Otto-Kraftstoff erzeugt, der sich später gezielt weiterentwickeln lässt, beispielsweise für die Benzin-Direkteinspritzung.

In der Energieforschung ist das Karlsruher Institut für Technologie (KIT) eine der europaweit führenden Einrichtungen: Das KIT-Zentrum Energie vereint grundlegende und angewandte Forschung zu allen relevanten Energieformen für Industrie, Haushalt, Dienstleistungen und Mobilität. In die ganzheitliche Betrachtung des Energiekreislaufs sind Umwandlungsprozesse und Energieeffizienz mit einbezogen. Das KIT-Zentrum Energie verbindet exzellente technik- und naturwissenschaftliche Kompetenzen mit wirtschafts-, geistes- und sozialwissenschaftlichem sowie rechtswissenschaftlichem Fachwissen. Die Arbeit des KIT-Zentrums Energie gliedert sich in sieben Topics: Energieumwandlung, erneuerbare Energien, Energiespeicherung und Energieverteilung, effiziente Energienutzung, Fusionstechnologie, Kernenergie und Sicherheit sowie Energiesystemanalyse.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Monika Landgraf
Pressestelle
Tel.: +49 721 608-8126
Fax: +49 721 608-3658
E-Mail: monika.landgraf@kit.edu

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik

Neue Perspektiven durch gespiegelte Systeme

05.12.2016 | Physik Astronomie

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie