Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ferngesteuertes Verhalten: Licht aktiviert einzelne Nervenzellen im Gehirn

18.05.2017

Erstmals ist es möglich, in einem Wirbeltier ein Verhalten durch das künstliche Aktivieren weniger Nervenzellen auszulösen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried können einzelne Nervenzellen im Gehirn eines Zebrafischs identifizieren, die bestimmte Bewegungssignale auslösen können. Die neue Methode ermöglicht ein besseres Verständnis der zentralen Komponenten neuronaler Schaltkreise – eine Grundvoraussetzung zum Entschlüsseln des komplexen Codes, der selbst elementaren Hirnfunktionen zugrunde liegt.

In den letzten Jahren konnten Wissenschaftler viel über die Struktur und Funktion des Gehirns herausfinden. Der Fortschritt kam unter anderem durch neue Verfahren in der Mikroskopie und funktionellen Bildgebung, dank derer die Aktivität von Nervenzellpopulationen beobachtet werden kann, während ein Tier etwas wahrnimmt oder ein bestimmtes Verhalten zeigt.


Mit neuen Methoden können Neurobiologen einzelne Nervenzellen im Zebrafischgehirn gezielt mit Licht aktivieren und beobachten, wie sich die Aktivität im Gehirn ausbreitet, um ein Verhalten auszulösen

© MPI für Neurobiologie / dal Maschio

In diesen Studien ist es jedoch häufig nicht möglich, zwischen Ursache und Folge der beobachteten Aktivitätsveränderungen zu unterscheiden. Eine andere Methode, die Optogenetik, ermöglicht es Wissenschaftlern zu unterscheiden, ob bestimmte Nervenzellen für ein Verhalten essentiell sind, andere Aufgaben erfüllen, oder eher unbeteiligt sind. Dabei stellt der extrem hohe Grad an "Verknüpfung" neuronaler Netzwerke eine besondere Herausforderung an die Forschung: Die Aktivität selbst einer einzelnen Nervenzelle kann sich über einen großen Teil des Nervensystems ausbreiten.

In einer neuen Studie konnten Herwig Baier und sein Team am Max-Planck-Institut für Neurobiologie nun beide Hindernisse überwinden: Zum einen können nun Ursache und Wirkung einzelnen zellulären Komponenten eines neuronalen Schaltkreises zugeordnet werden. Zum anderen kann zeitgleich mitverfolgt werden, wie sich die Aktivität im gesamten Gehirn ausbreitet und ein Verhalten auslöst.

Für diese neu entwickelte Methode stimulieren die Forscher mehrere, ausgewählte Zellen im dreidimensionalen Nervengewebe durch Licht, während sie gleichzeitig die Netzwerkaktivität im Gehirn der untersuchten Zebrafischlarve aufnehmen. "Mit ihrem kleinen und durchsichtigen Gehirn sind Zebrafische einfach ideal für unsere neue Methode", erklärt Marco dal Maschio, einer der beiden Erstautoren der im Fachjournal Neuron veröffentlichten Studie.

Vor einigen Jahren gelang es Wissenschaftlern aus Herwig Baiers Abteilung, eine kleine Nervenzellpopulation im Zebrafischgehirn zu identifizieren, die bei ihrer Aktivierung die Auslenkung des Fischschwanzes auslöst. "Diese Arbeit konnte die entstehenden Aktivitätsmuster jedoch nicht in hoher Auflösung zeigen", erklärt Joseph Donovan, der andere Erstautor der Studie. "Aus diesem Grund haben wir einen neuen Ansatz entworfen." Im ersten Schritt modifizierten die Wissenschaftler das Zebrafisch-Nervensystem, indem sie genetisch "lichtschaltbare" Ionenkanäle in die Nervenzellen einschleusten. Dies ermöglichte es, die Hirnaktivität durch Bescheinen des durchsichtigen Kopfes von außen fernzusteuern.

Solch eine Zebrafischlarve setzten Donovan und dal Maschio dann unter das Mikroskop und projizierten computergenerierte Hologramme, bestehend aus dreidimensionalen Lichtmustern, in das Fischgehirn. Die Lichtstrahlen befanden sich im infraroten Bereich, dem sogenannten Zwei-Photonen Modus, und waren daher für die Fische unsichtbar. Durch ihre spezielle Form zielten die Lichtstrahlen nur auf jeweils eine kleine Gruppe einzelner Nervenzellen.

Während das Licht nun Nervenzellen in unterschiedlichen Kombinationen aktivierte, zeichnete eine schnelle Kamera die Schwanzbewegungen des Fisches auf. Diesen Vorgang wiederholten die Wissenschaftler so lange, bis sie eine kleine Gruppe bestehend aus mindestens drei Nervenzellen identifiziert hatten: Diese Zellen reichten aus, um den Fischschwanz zu bewegen. Mit Hilfe eines schnellen 3D Imaging-Verfahrens nahmen die Wissenschaftler daraufhin die Aktivität im Gehirn auf, die sich von diesen drei Nervenzellen ausbreitete.

Die so gewonnenen Daten flossen in ein Computerprogramm ein, das Aktivitätsmuster identifizierte, die mit bestimmten Komponenten des ausgelösten Verhaltens assoziiert werden konnten. Das Programm wies zudem jeder Nervenzelle einen bestimmten "Beitragswert" zum Verhalten zu. Zu guter Letzt rekonstruierten die Wissenschaftler einzelne Nervenzellen mit interessanten Funktionen, indem sie die Form der Zellen unter dem Mikroskop sichtbar machten. Da die Gehirne einzelner Fische sehr ähnlich verschaltet sind, können Forscher nun ein generelles Schaltplandiagram aus den kombinierten Daten vieler solcher Experimente erstellen.

"Zum ersten Mal kann nun verfolgt werden, wie ein Verhaltenskommando sich von einigen wenigen Zellen ausgehend durch das Gehirn ausbreitet und eine physikalische Aktion auslöst", freut sich Marco dal Maschio über das Ergebnis. Der Wissenschaftler hat guten Grund, optimistisch zu sein: Der neue experimentelle Arbeitsablauf ermöglicht es ihm und seinen Kollegen Schaltkreise im Gehirn in bisher unerreichtem Detail zu untersuchen. Da Funktion und Struktur des Gehirns zwischen Fischen und Säugetieren durch die Evolution weitgehend konserviert sind, sollten diese Studien generelle Prinzipien der Gehirnaktivität bei der Erzeugung von Verhalten ans Licht bringen.

ORIGINALVERÖFFENTLICHUNG
Marco dal Maschio*, Joseph C. Donovan*, Thomas O. Helmbrecht, Herwig Baier
Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging
Neuron, 17. Mai 2017
* Gleichraniger Beitrag

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Herwig Baier am MPI für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics