Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Fenster“ in das Innere von Zellen - Neue Methode ermöglicht detailliertere Einblicke in die Zelle

13.03.2012
Die Kryo-Elektronentomografie ermöglicht hochauflösende, dreidimensionale Einblicke in das Innere von Zellen. Jedoch können damit nur sehr kleine Zellen oder dünne Randbereiche größerer Zellern direkt untersucht werden.

Wissenschaftler vom Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München haben jetzt eine Methode entwickelt, um in nahezu unzugängliche Zellbereiche vorzudringen. Mit einem fokussierten Ionenstrahl können die Forscher gezielt winzige „Fenster“ in das Innere von Zellen schneiden. So lassen sich auch größere zelluläre Proben präparieren und mittels Elektronentomografie analysieren. Die Arbeit der MPIB-Wissenschaftler wurde vor kurzem in PNAS, veröffentlicht.


Gezielte Präparation eines elektronentransparenten „Fensters“ innerhalb einer einzelnen eiseingebetteten Zelle. Der Einsatz eines Ionenstrahl Mikroskops ermöglicht neue Einblicke in das Zellinnere. Oberer Bildbereich: Zellen vor der Präparation Zentraler Bildbereich: Zelle nach dem Ionendünnen (Dimension des „Fensters“: 25 µm², Dicke: ca. 300 nm).
Grafik: Alexander Rigort & Felix Bäuerlein / Copyright: MPI für Biochemie

Mit der Kryo-Elektronentomografie, die maßgeblich in der Abteilung Molekulare Strukturbiologie unter der Leitung von Wolfgang Baumeister entwickelt wurde, können Forscher dreidimensionale zelluläre Strukturen direkt untersuchen. Die gesamte Zelle oder einzelne Zellbestandteile werden blitzartig „schockgefroren“ und in glasartiges Eis eingeschlossen, sodass ihre räumlichen Strukturen erhalten bleiben. Das Transmissionselektronenmikroskop ermöglicht es anschließend, zweidimensionale Projektionen aus unterschiedlichen Blickrichtungen aufzuzeichnen.

Schließlich rekonstruieren die Wissenschaftler aus diesen Aufnahmen ein hochaufgelöstes dreidimensionales Bild. Jedoch kann der Elektronenstrahl nur sehr dünne Präparate (beispielsweise Bakterienzellen) bis zu einer Dicke von 500 Nanometern gut durchdringen. Zellen höherer Organismen sind deutlich dicker. Modernste elektronenmikroskopische Präparationsmethoden sind deshalb notwendig, um auch größere Objekte der Kryo-Elektronentomografie zugänglich zu machen. „Die artefaktfreie und vor allem gezielte Präparation größerer Zellen ist dabei ein kritischer Schritt“, erläutert Alexander Rigort, MPIB-Wissenschaftler. „Mit den herkömmlichen Methoden konnten wir nie ausschließen, dass Strukturen, die wir untersuchen wollten, verändert wurden.“ Die Aussagekraft der Ergebnisse war daher begrenzt, so der Zellbiologe.

Mit dem Einsatz eines Ionenstrahl-Mikroskops (Focused Ion Beam; FIB) können die Forscher jetzt einzelne Schichten der schockgefrorenen Zelle gezielt und kontrolliert abtragen – winzige maßgeschneiderte „Fenster“ entstehen. Ein zusätzlicher Vorteil des Ionendünnens ist, dass mechanische Schneideartefakte vollständig vermieden werden. Ursprünglich wurde diese Methode für die Materialwissenschaften entwickelt. In der Strukturbiologie soll sie jetzt tiefe Einblicke in die molekulare Organisation des Zellinneren geben. Je dünner die “Fenster“ dabei sind, desto höher ist die erreichbare Auflösung im Elektronenmikroskop. „Jetzt sind präzise Einblicke in die makromolekulare Architektur von Zellbereichen möglich, die bisher für die Kryo-Elektronenmikroskopie nahezu unzugänglich waren“, sagt Jürgen Plitzko, Wissenschaftler am MPIB.

Originalveröffentlichung
A. Rigort, F. J. B. Bäuerlein, E. Villa, M. Eibauer, T. Laugks, W. Baumeister and J. M. Plitzko: Focused Ion Beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. USA, March 5, 2012

Doi:10.1073/pnas.1201333109.

Kontakt
Dr. Jürgen M. Plitzko
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: plitzko@biochem.mpg.de
http://www.biochem.mpg.de/baumeister
Dr. Alexander Rigort
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: rigort@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie