Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen

21.04.2017

Glasartige Festpartikel können den atmosphärischen Transport organischer Schadstoffe über weite Distanzen hinweg ermöglichen

Sekundäre organische Aerosole (SOA) entstehen bei der Oxidation flüchtiger organischer Verbindungen in der Atmosphäre. Sie sind für einen Großteil des Feinstaubs in der Luft verantwortlich und haben einen starken Einfluss auf die regionale und globale Luftqualität. Bis vor kurzem wurde angenommen, dass SOA-Partikel ölige, flüssige Tropfen sind.


Die Grafik zeigt, wie sich der Phasenzustand der sekundären organischen Aerosole in Abhängigkeit von Höhe und Temperatur ändert. Ob die Partikel flüssig, halbfest (viskos) oder fest (glasig) sind, hat starke Auswirkungen auf die Veränderung ihrer chemischen Eigenschaften, den Langstreckentransport und deren Einfluss auf die Wolkenbildung. Quelle: Manabu Shiraiwa


Organische Partikel sind in verschmutzter Luft allgegenwärtig. Die neue Studie zeigt, wann und wo diese Partikel flüssig, viskos oder fest sind. Im Bild zu sehen ist eine extreme Dunstglocke über Peking und anderen chinesischen Städte im Januar 2013. Quelle: NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response

Aktuelle Studien zeigen jedoch, dass SOA-Partikel, abhängig von der chemischen Zusammensetzung sowie Temperatur und Feuchtigkeit, auch einen glasartigen Festkörperzustand annehmen können. Ob die Partikel in flüssiger oder fester Form vorliegen, wirkt sich sehr stark auf ihr Verhalten im Zusammenspiel mit Wolken und Spurengasen aus und bestimmt auch, welchen Einfluss sie auf das Klima und die menschliche Gesundheit haben.

Bisher jedoch war unklar, ob und wo in der Atmosphäre SOA-Partikel flüssig oder fest vorliegen. Eine neue Studie eines internationalen Teams von Wissenschaftlern, darunter Forscher des Max-Planck-Instituts für Chemie in Mainz und der University of California in Irvine, USA, bietet nun aber Einblicke in die globale Verteilung des Phasenzustands organischer Partikel in der Atmosphäre.

„Wir haben herausgefunden, dass SOA-Partikel meist in der Nähe der Erdoberfläche flüssig sind und im Rest der Atmosphäre glasartig“, erklärt Manabu Shiraiwa, Hauptautor der Studie, die vor kurzem in der Open-Access-Zeitschrift „Nature Communications“ veröffentlicht wurde. Shiraiwa, ehemaliger Gruppenleiter beim MPI für Chemie in Mainz, arbeitet jetzt als Assistant Professor im Fachbereich Chemie an der University of California, Irvine.

Glasartige SOA-Partikel können organische Schadstoffe vor dem Abbau durch atmosphärische Oxidationsmittel schützen. Das könnte eine Erklärung dafür sein, dass hohe Konzentrationen solcher Schadstoffe nicht nur in der Nähe anthropogener Quellen sondern auch in abgelegenen Meeres- und Polarregionen beobachtet werden. Ob SOA-Partikel glasartig oder flüssig sind, hängt jedoch stark von ihrer chemischen Zusammensetzung, der Umgebungstemperatur sowie der Luftfeuchtigkeit ab.

Daher müssen die molekulare Zusammensetzung und die zugehörigen physikochemischen Eigenschaften der sekundären organische Aerosole bekannt sein, damit eine zuverlässige Einschätzung des Phasenzustands der Partikel und ihrer Auswirkungen vorgenommen werden kann. Diese wurden aber in früheren Studien nicht gut eingegrenzt.

„Zum ersten Mal konnten wir jetzt eine komplexe molekulare Beschreibung der physikalischen und chemischen Eigenschaften von SOA-Partikeln in einem modernen globalen Modell erstellen, um die räumliche und zeitliche Variabilität des SOA-Phasenzustands in der Atmosphäre zu berechnen“, führt Ulrich Pöschl, Direktor der Abteilung für Multiphasenchemie am MPI für Chemie, aus. Jos Lelieveld, Direktor der Abteilung Atmosphärenchemie am Mainzer Institut fügt hinzu, dass „weitere Studien geplant sind, um die Einfluss verschiedener Phasenzustände der sekundären organische Aerosole auf Wolken, Klima, Luftqualität und Gesundheit zu messen“.

Originalveröffentlichung:
“Global distribution of particle phase state in atmospheric secondary organic aerosols”: Manabu Shiraiwa, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Thomas Berkemeier, Spyros N. Pandis, Jos Lelieveld, Thomas Koop, Ulrich Pöschl, Nature Communications 2017, DOI: 10.1038/ncomms15002

Kontakt:
Prof. Dr. Manabu Shiraiwa
Department of Chemistry, University of California, Irvine, CA 92697, USA
Tel.: +1-949-824-2738
E-Mail: m.shiraiwa@uci.edu

Prof. Dr. Ulrich Pöschl
Max-Planck-Institut für Chemie, Mainz
Direktor, Abteilung Multiphasenchemie
Tel.: +49(0)6131 305 7000
E-Mail: u.poschl@mpic.de

Prof. Dr. Jos Lelieveld
Max-Planck-Institut für Chemie, Mainz, Germany
Direktor, Abteilung Atmosphärenchmie
Tel.: +49-6131-3053000
E-Mail: jos.lelieveld@mpic.de

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/feinste-organische-partikel-in...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen